Câu hỏi:
11/07/2024 1,042b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
b) Vì tam giác ABC vuông cân tại A nên AB ^ AC.
Vì AA' ^ (ABC) nên AA' ^ AB mà AB ^ AC nên AB ^ (ACC'A'), suy ra AB ^ AC'.
Do đó tam giác ABC' là tam giác vuông tại A.
Hạ AK ^ BC' tại K. Khi đó d(A, BC') = AK.
Vì ACC'A' là hình chữ nhật nên .
Xét tam giác ABC' vuông tại A, AK là đường cao, ta có:
.
Vậy khoảng cách từ A đến BC' bằng .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).
a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').
Câu 2:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ^ (ABCD), .
a) Tính khoảng cách từ A đến SC.
Câu 3:
Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a, mặt bên SAD là một tam giác đều và (SAD) ^ (ABCD).
a) Tính chiều cao của hình chóp.
Câu 4:
Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đõ, biết các chân của giá đỡ dài 129 cm.
Câu 5:
Cho tứ diện ABCD có các cạnh đều bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng:
a) MN là đường vuông góc chung của AB và CD.
Câu 6:
Cho hình chóp S.ABC có SA ^ (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.
a) Tính d((MNP), (ABC)) và d(NP, (ABC)).
Câu 7:
Ở một con dốc lên cầu, người ta đặt một khung khống chế chiều cao, hai cột của khung có phương thẳng đứng và có chiều dài bằng 2,28 m. Đường thẳng nối hai chân cột vuông góc với hai đường mép dốc. Thanh ngang được đặt trên đỉnh hai cột. Biết dốc nghiêng 15° so phương nằm ngang. Tính khoảng cách giữa thanh ngang của khung và mặt đường (theo đơn vị mét và làm tròn kết quả đến chữ số thập phân thứ hai). Hỏi cầu này có cho phép xe cao 2,21 m đi qua hay không?
về câu hỏi!