Câu hỏi:

11/07/2024 1,377

b) Chứng minh rằng BD ^ (SAC).

c) Xác định đường vuông góc chung và tính khoảng cách giữa BD và SC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Do ABCD là hình vuông nên AC ^ BD.

Vì SA ^ (ABCD) nên SA ^ BD mà AC ^ BD nên BD ^ (SAC).

c) Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD.

Kẻ OK ^ SC tại K.

Vì BD ^ (SAC) nên BD ^ OK mà OK ^ SC nên OK là đường vuông góc chung của BD và SC.

Xét tam giác CHA có O là trung điểm của AC và OK // AH (vì cùng vuông góc với SC) nên K là trung điểm của CH. Do đó OK là đường trung bình của tam giác CHA nên OK=AH2=a2 .

Vậy d(BD, SC) = a2 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đõ, biết các chân của giá đỡ dài 129 cm. (ảnh 2)

Giá đỡ ba chân ở Hình 7.90 có dạng hình chóp đều S.ABC.

Vì S.ABC là hình chóp đều nên SH ^ (ABC) với H là trọng tâm của tam giác ABC.

Gọi AH Ç BC tại M. Khi đó M là trung điểm của BC.

Vì ABC là tam giác đều cạnh 110 cm, AM là đường cao nên AM = 11032   (cm).

AH=23AM=11033  (cm).

Xét tam giác SHA vuông tại H, có:

SH=SA2AH2=1292110332=378233112,28(cm).

Vậy chiều cao giá đỡ khoảng 112,28 cm.

Lời giải

a) Vì ABC.A'B'C' là hình lăng trụ đứng nên BB' ^ (ABC) nên (BCC'B') ^ (ABC).

Hạ AH ^ BC tại H.

Có BCC'B'(ABC)BCC'B'(ABC)=BCAH(ABC)AHBCAHBCC'B'  .

Khi đó AH chính là khoảng cách từ A đến mặt phẳng (BCC'B').

Vì tam giác ABC vuông cân tại A nên AB = AC = a.

Xét tam giác ABC vuông cân tại A, có

1AH2=1AB2+1AC2=1a2+1a2=2a2AH=a2

Vậy khoảng cách từ A đến mặt phẳng (BCC'B') bằng a2  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP