Câu hỏi:

30/10/2023 318

Cho các đa thức:

A = 27x3y6 – \(\frac{1}{8}\)y3;          B = 9x2y4 + \(\frac{3}{2}\)xy3 + \(\frac{1}{4}\)y2;   C = 3xy2 – \(\frac{1}{2}\)y.

Chứng minh rằng A : B = C.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có B . C = \(\left( {9{x^2}{y^4} + \frac{3}{2}x{y^3} + \frac{1}{4}{y^2}} \right).\left( {3x{y^2} - \frac{1}{2}y} \right)\)

= \(9{x^2}{y^4}.\left( {3x{y^2} - \frac{1}{2}y} \right) + \frac{3}{2}x{y^3}.\left( {3x{y^2} - \frac{1}{2}y} \right) + \frac{1}{4}{y^2}.\left( {3x{y^2} - \frac{1}{2}y} \right)\)

= 27x3y6 – \(\frac{9}{2}{x^2}{y^5}\) + \(\frac{9}{2}{x^2}{y^5}\) – \(\frac{3}{4}x{y^4}\) + \(\frac{3}{4}x{y^4}\) – \(\frac{1}{8}{y^3}\)

= 27x3y6 – \(\frac{1}{8}\)y3  = A.

Do đó, B . C = A. Suy ra A : B = C (đcpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a)Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).

Vì E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC nên HE vuông góc với AB, HF vuông góc với AC.

Do đó, \(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = 90^\circ \).

Xét tứ giác AFHE có: \(\widehat {BAC} = \widehat {HEA} = \widehat {HFA} = 90^\circ \).

Do đó, tứ giác AFHE là hình chữ nhật.

Suy ra AH = FE (hai đường chéo bằng nhau).

b) Vì tứ giác AFHE là hình chữ nhật nên \(\widehat {FHE} = 90^\circ \).

Vì AM là đường trung tuyến trong tam giác ABC vuông tại A nên

AM = MB = MC = \(\frac{1}{2}BC\).

Tam giác AMB có AM = MB nên tam giác AMB cân tại M.

Do đó, \(\widehat {MAB} = \widehat B\).

Lại có \(\widehat B = \widehat {AHE}\,\,\,\,\,\left( { = 90^\circ - \widehat {HEB}} \right)\).

Nên \(\widehat {MAB} = \widehat {AHE}\) (1).

Gọi O là giao điểm của hai đường chéo FE và AH của hình chữ nhật AFHE.

Do đó, OH = OE = OF = OA.

Tam giác OAE có OA = OE nên tam giác OAE cân tại O.

Suy ra \(\widehat {OEA} = \widehat {OAE}\).

Mà AE song song với FH (do AFHE là hình chữ nhật) nên \(\widehat {OHF} = \widehat {OAE}\) (hai góc so le trong).

Do đó, \(\widehat {OEA} = \widehat {OHF}\) (2).

Lại có \(\widehat {OHF} + \widehat {OHE} = \widehat {FHE} = 90^\circ \) (3).

Từ (1), (2), (3) ta có: \[\widehat {MAB} + \widehat {OEA} = 90^\circ \].

Gọi K là giao điểm của AM và EF. Khi đó, \[\widehat {KAE} + \widehat {KEA} = 90^\circ \]. Suy ra \(\widehat {AKE} = 90^\circ \).

Vậy AM vuông góc với EF tại K.

Lời giải

Lời giải

a) Hàm số y = (3m + 1)x – 2m là hàm số bậc nhất khi 3m + 1 ≠ 0, tức là m ≠ \(\frac{{ - 1}}{3}\).

b) Vì đồ thị hàm số đã cho là đường thẳng song song với đường thẳng y = –2x + 5 nên

3m + 1 = –2 và –2m ≠ 5.

Tức là m = –1 và m ≠ \(\frac{{ - 5}}{2}\). Suy ra m = – 1.

Vậy m = – 1.

c) Với m = –1, ta có y = –2x + 2.

Đồ thị hàm số y = –2x + 2 là đường thẳng đi qua hai điểm A(0; 2), B(1; 0) như hình dưới đây.

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay