Câu hỏi:

11/07/2024 1,151 Lưu

Cho tam giác ABC. Giả sử M là điểm trên cạnh AB sao cho \(\frac{{MB}}{{MA}} = \frac{1}{3}\), N là điểm trên cạnh BC sao cho \(\frac{{NB}}{{NC}} = \frac{1}{3}\).

a) Chứng minh MN // AC và MN = \(\frac{1}{4}\)AC.

b) Gọi K là giao điểm của AN và CM. Chứng minh \[\frac{{KN}}{{KA}} = \frac{{KM}}{{KC}} = \frac{1}{4}\].

c) Nếu thay điều kiện \(\frac{{MB}}{{MA}} = \frac{1}{3}\) và \(\frac{{NB}}{{NC}} = \frac{1}{3}\) bằng điều kiện CM là phân giác của góc C, AN là phân giác của góc A thì tam giác ABC phải thỏa mãn điều kiện gì để MN // AC?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

Lời giải

Media VietJack

a) Xét tam giác ABC có:

\(\frac{{MB}}{{MA}} = \frac{{NB}}{{NC}}\,\,\,\,\left( { = \frac{1}{3}} \right)\)

Nên MN // AC (định lí Thalès đảo).

Vì \(\frac{{MB}}{{MA}} = \frac{1}{3}\) nên MA = 3MB.

Tam giác ABC có MN // AC nên \[\frac{{MN}}{{AC}} = \frac{{BM}}{{AB}} = \frac{{BM}}{{BM + MA}} = \frac{{BM}}{{4BM}} = \frac{1}{4}\].

Suy ra MN = \(\frac{1}{4}\)AC.

b) Tam giác MNK có MN // AC nên \(\frac{{KN}}{{KA}} = \frac{{KM}}{{KC}} = \frac{{MN}}{{AC}} = \frac{1}{4}\).

c) Nếu MN // AC thì \(\frac{{MB}}{{MA}} = \frac{{NB}}{{NC}}\) (định lí Thalès) (1).

Vì CM là tia phân giác của góc BCA trong tam giác ABC nên \(\frac{{MB}}{{MA}} = \frac{{BC}}{{AC}}\) (2).

Vì AN là tia phân giác của góc BAC trong tam giác ABC nên \(\frac{{NB}}{{NC}} = \frac{{AB}}{{AC}}\) (3).

Từ (1), (2), (3) suy ra \(\frac{{AB}}{{AC}} = \frac{{BC}}{{AC}}\) nên AB = BC.

Do đó, tam giác ABC cân tại B.

Ngược lại, nếu tam giác ABC cân tại B, CM là phân giác của góc C, AN là phân giác góc A thì dễ thấy MN // AC.

Vậy để MN // AC thì điều kiện là tam giác ABC cân tại B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a)Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).

Vì E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC nên HE vuông góc với AB, HF vuông góc với AC.

Do đó, \(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = 90^\circ \).

Xét tứ giác AFHE có: \(\widehat {BAC} = \widehat {HEA} = \widehat {HFA} = 90^\circ \).

Do đó, tứ giác AFHE là hình chữ nhật.

Suy ra AH = FE (hai đường chéo bằng nhau).

b) Vì tứ giác AFHE là hình chữ nhật nên \(\widehat {FHE} = 90^\circ \).

Vì AM là đường trung tuyến trong tam giác ABC vuông tại A nên

AM = MB = MC = \(\frac{1}{2}BC\).

Tam giác AMB có AM = MB nên tam giác AMB cân tại M.

Do đó, \(\widehat {MAB} = \widehat B\).

Lại có \(\widehat B = \widehat {AHE}\,\,\,\,\,\left( { = 90^\circ - \widehat {HEB}} \right)\).

Nên \(\widehat {MAB} = \widehat {AHE}\) (1).

Gọi O là giao điểm của hai đường chéo FE và AH của hình chữ nhật AFHE.

Do đó, OH = OE = OF = OA.

Tam giác OAE có OA = OE nên tam giác OAE cân tại O.

Suy ra \(\widehat {OEA} = \widehat {OAE}\).

Mà AE song song với FH (do AFHE là hình chữ nhật) nên \(\widehat {OHF} = \widehat {OAE}\) (hai góc so le trong).

Do đó, \(\widehat {OEA} = \widehat {OHF}\) (2).

Lại có \(\widehat {OHF} + \widehat {OHE} = \widehat {FHE} = 90^\circ \) (3).

Từ (1), (2), (3) ta có: \[\widehat {MAB} + \widehat {OEA} = 90^\circ \].

Gọi K là giao điểm của AM và EF. Khi đó, \[\widehat {KAE} + \widehat {KEA} = 90^\circ \]. Suy ra \(\widehat {AKE} = 90^\circ \).

Vậy AM vuông góc với EF tại K.

Lời giải

Lời giải

a) Hàm số y = (3m + 1)x – 2m là hàm số bậc nhất khi 3m + 1 ≠ 0, tức là m ≠ \(\frac{{ - 1}}{3}\).

b) Vì đồ thị hàm số đã cho là đường thẳng song song với đường thẳng y = –2x + 5 nên

3m + 1 = –2 và –2m ≠ 5.

Tức là m = –1 và m ≠ \(\frac{{ - 5}}{2}\). Suy ra m = – 1.

Vậy m = – 1.

c) Với m = –1, ta có y = –2x + 2.

Đồ thị hàm số y = –2x + 2 là đường thẳng đi qua hai điểm A(0; 2), B(1; 0) như hình dưới đây.

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP