Câu hỏi:
13/07/2024 378Trong Hình 5, cho biết MN là đường trung bình của tam giác ABC. Tam giác ADE đồng dạng với tam giác ABC theo tỉ số \[k = \frac{2}{3}\].
Tính tỉ số đồng dạng của ∆ADE và ∆AMN.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
∆ADE ᔕ ∆ABC theo tỉ số \[\frac{{AD}}{{AB}} = \frac{2}{3}\].
∆ABC ᔕ ∆AMN theo tỉ số \[\frac{{AB}}{{AM}} = 2\] (vì M là trung điểm AB).
Suy ra \[\frac{{AD}}{{AB}}.\frac{{AB}}{{AM}} = \frac{2}{3}.2 = \frac{4}{3}\] hay \[\frac{{AD}}{{AM}} = \frac{4}{3}\].
Vậy ∆ADE ᔕ ∆AMN theo tỉ số \[\frac{{AD}}{{AM}} = \frac{4}{3}\].
Đã bán 212
Đã bán 123
Đã bán 287
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong Hình 7, cho biết RV là tia phân giác của \[\widehat {SRT}\] và UV // RT. Chứng minh rằng:
\[\frac{{SU}}{{UR}} = \frac{{SR}}{{RT}}\].
Câu 3:
Trong Hình 9, cho biết ∆ABC ᔕ ∆DEF, ∆DEF ᔕ ∆IHK. Tính độ dài các đoạn thẳng AB, EF, IH và HK.
Câu 4:
Trong Hình 6, cho biết ∆ABC ᔕ ∆DEE.
Tính độ dài các đoạn thẳng AB và EF.
Câu 5:
Người ta ứng dụng hai tam giác đồng dạng để đo khoảng cahs BC ở hai điểm không đến được (Hình 10). Biết AD // BC.
a) Chứng mình rằng ∆IDA ᔕ ∆IBC.
Câu 6:
Trong Hình 5, cho biết MN là đường trung bình của tam giác ABC. Tam giác ADE đồng dạng với tam giác ABC theo tỉ số \[k = \frac{2}{3}\].
Chứng minh rằng ∆ADE ᔕ ∆AMN.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận