Giải SBT Toán 8 CTST Hai tam giác đồng dạng có đáp án
44 người thi tuần này 4.6 400 lượt thi 11 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi cuối kì 1 Toán 8 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
Bộ 10 đề thi Cuối kì 1 Toán 8 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 8 Kết nối tri thức cấu trúc mới có đáp án - Đề 2
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Trên cạnh AB lấy điểm D sao cho \[AD = \frac{3}{5}AB\].
Từ D kẻ đường thẳng song song với BC và cắt AC tại E.
Ta có ∆ADE ᔕ ∆ABC theo tỉ số đồng dạng \[k = \frac{{AD}}{{AB}} = \frac{3}{5}\].
Dựng ∆A’B’C’ = ∆ADE.
Dựng A’B’ = AD.
Dựng cung tròn tâm A’ bán kính AE và cung tròn tâm B’ bán kính DE, hai cung tròn cắt nhau tại C’.
Nối B’C’, A’C’ ta được tam giác phải dựng.
Ta có ∆ADE ᔕ ∆ABC theo tỉ số\[k = \frac{3}{5}\] nên ∆A’B’C’ ᔕ ∆ABC theo tỉ số \[k = \frac{3}{5}\].

Lời giải
Ta có MN là đường trung bình của tam giác ABC, suy ra MN // BC.
Suy ra ∆ABC ᔕ ∆AMN. Mà ∆ADE ᔕ ∆ABC, suy ra ∆ADE ᔕ ∆AMN.
Lời giải
∆ADE ᔕ ∆ABC theo tỉ số \[\frac{{AD}}{{AB}} = \frac{2}{3}\].
∆ABC ᔕ ∆AMN theo tỉ số \[\frac{{AB}}{{AM}} = 2\] (vì M là trung điểm AB).
Suy ra \[\frac{{AD}}{{AB}}.\frac{{AB}}{{AM}} = \frac{2}{3}.2 = \frac{4}{3}\] hay \[\frac{{AD}}{{AM}} = \frac{4}{3}\].
Vậy ∆ADE ᔕ ∆AMN theo tỉ số \[\frac{{AD}}{{AM}} = \frac{4}{3}\].
Lời giải
Ta có ∆ABC ᔕ ∆DEE nên \[\widehat E = \widehat B\]= 34°.
Vậy \[\widehat E = 34^\circ \].
Lời giải
Ta có ∆ABC ᔕ ∆DEE suy ra
\[\frac{{AD}}{{DE}} = \frac{{BC}}{{EF}} = \frac{{AC}}{{DF}}\] hay \[\frac{{AB}}{{4,2}} = \frac{{3,6}}{{EF}} = \frac{2}{3}\].
Suy ra \[\frac{{AB}}{{4,2}} = \frac{2}{3}\] và \[\frac{{3,6}}{{EF}} = \frac{2}{3}\].
Do đó \[AB = \frac{{2.4,2}}{3} = 2,8\] và \[EF = \frac{{3,6.3}}{2} = 5,4\].
Vậy AB = 2,8 và EF = 5,4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.









