Câu hỏi:

13/07/2024 540

Cho Hình 2, biết AM là đường trung tuyến của tam giác ABC, MD là tia phân giác của \[\widehat {AMB}\], ME là tia phân giác của \[\widehat {AMC}\]. Chứng minh ADE  ABC.

Cho Hình 2, biết AM là đường trung tuyến của tam giác ABC, MD là tia phân giác (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

MD là tia phân giác của \[\widehat {AMB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\].

ME là tia phân giác của \[\widehat {AMC}\] nên \[\frac{{EA}}{{EC}} = \frac{{MA}}{{MC}}\].

AM là đường trung tuyến nên MB = MC .

Do đó \[\frac{{EA}}{{EC}} = \frac{{DA}}{{DB}}\]. Suy ra DE // BC.

Suy ra ADE ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nếu ABC MNP theo tỉ số \[k = \frac{2}{3}\] thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số nào?

A. \[\frac{2}{3}\];

B. \[\frac{3}{2}\];

C. \[\frac{9}{4}\];

D. \[\frac{4}{9}\].

Xem đáp án » 13/07/2024 4,148

Câu 2:

Cho tam giác ABC vuông tại A và đường cao AH.

Chứng mình rằng AB2 = BH . BC.

Xem đáp án » 13/07/2024 1,734

Câu 3:

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Chứng mình rằng:

HA . HD = HB . HE = HC . HF.

Xem đáp án » 13/07/2024 1,615

Câu 4:

Cho tam giác ABC vuông tại A và đường cao AH.

Chứng mỉnh rằng AH2 = BH . CH.

Xem đáp án » 13/07/2024 1,481

Câu 5:

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Chứng mình rằng:

BC2 = BE . BH + CF . CH.

Xem đáp án » 13/07/2024 1,323

Câu 6:

Cho tam giác ABC vuông tại A và đường cao AH.

Trên tia đối của tia AC lấy điểm D (AD < AC). Đường thẳng qua H và song song với AC cắt AB, BD lần lượt tại M, N. Chứng minh rằng \[\frac{{MN}}{{MH}} = \frac{{AD}}{{AC}}\].

Xem đáp án » 13/07/2024 1,077

Câu 7:

Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC. Kẻ MD BC (D BC).

Gọi E là giao điểm của đường thẳng AB với đường thẳng MD.

Chứng minh rằng DB . DC = DE . DM.

Xem đáp án » 13/07/2024 895

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store