Câu hỏi:
13/07/2024 585
Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC. Kẻ MD ⊥ BC (D ∈ BC).
Đường thẳng BM cắt EC tại K. Chứng minh rằng \[\widehat {EKA} = \widehat {EBC}\].
Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC. Kẻ MD ⊥ BC (D ∈ BC).
Đường thẳng BM cắt EC tại K. Chứng minh rằng \[\widehat {EKA} = \widehat {EBC}\].
Câu hỏi trong đề: Giải SBT Toán 8 CTST Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:

Xét ∆BEC có đường cao CA và BE cắt nhau tại M, suy ra M là trực tâm ∆BEC.
Do đó BK ⊥ EC.
Xét ∆EAC vuông tại A và ∆EKB vuông tại K có \[\widehat {BEC}\] chung.
Do đó ∆EAC ᔕ ∆EKB (g.g)
Suy ra \[\frac{{EA}}{{EK}} = \frac{{EC}}{{EB}}\] hay \[\frac{{EA}}{{EC}} = \frac{{EK}}{{EB}}\].
Xét ∆EAK và ∆ECB có \[\frac{{EA}}{{EC}} = \frac{{EK}}{{EB}}\] và \[\widehat {BEC}\] chung.
Do đó ∆EAK ᔕ ∆ECB (c.g.c).
Suy ra \[\widehat {EKA} = \widehat {EBC}\] (các góc tương ứng).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Nếu ∆ABC ᔕ ∆MNP theo tỉ số \[k = \frac{2}{3}\] thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số \[\frac{1}{k} = \frac{3}{2}\].
Lời giải

Xét ∆HBA vuông tại H và ∆HAC vuông tại H có
\[\widehat {BAH} = \widehat {ACH}\] (cùng phụ với \[\widehat {CAH}\]).
Do đó ∆HBA ᔕ ∆HAC (g.g).
Suy ra \[\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\]. Do đó AH2 = BH . CH (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.