Câu hỏi:

13/07/2024 899

Cho tam giác nhọn ABC có ba đường cao AM, BN, CQ cắt nhau tại H.

Đường thẳng QN cắt đường thẳng BC tại F. Chứng minh rằng FB . FC = FQ . FN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Đường thẳng QN cắt đường thẳng BC tại F. Chứng minh rằng FB . FC = FQ . FN (ảnh 1)

Xét ∆FQB và ∆FCN có

\[\widehat {CFN}\] chung; \[\widehat {FQB} = \widehat {FCN}\] \[\left( { = \widehat {AQN}} \right)\].

Do đó ∆FQB ∆FCN (g.g).

Suy ra \[\frac{{FQ}}{{FC}} = \frac{{FB}}{{FN}}\]. Do đó FB . FC = FQ . FN (g.g).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Nếu ABC MNP theo tỉ số \[k = \frac{2}{3}\] thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số \[\frac{1}{k} = \frac{3}{2}\].

Lời giải

Cho tam giác ABC vuông tại A Chứng mỉnh rằng AH^2 = BH . CH (ảnh 1)

Xét ∆HBA vuông tại H và ∆HAC vuông tại H có

\[\widehat {BAH} = \widehat {ACH}\] (cùng phụ với \[\widehat {CAH}\]).

Do đó ∆HBA ∆HAC (g.g).

Suy ra \[\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\]. Do đó AH2 = BH . CH (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP