Câu hỏi:

06/12/2023 1,465

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua A(2; 1) có hệ số góc k nguyên dương. Phương trình đường thẳng d tạo với hai trục tọa độ một tam giác có diện tích bằng 0,5 là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua A(2; 1) có hệ số góc k nguyên dương. (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, đường thẳng d: xa+yb=1  a,b;a,b0 đi qua M(–1; 6) và tạo với tia Ox, Oy một tam giác có diện tích bằng 4. Giá trị S = a + 2b có thể bằng

Xem đáp án » 06/12/2023 1,539

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; –3), B(0; 2), C(–2; 4). Đường thẳng Δ đi qua A và chia tam giác ABC thành hai phần có diện tích bằng nhau. Phương trình của đường thẳng Δ là

Xem đáp án » 06/12/2023 1,473

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1; –2), đường cao CH: x – y + 1 = 0, phân giác trong BN: 2x + y + 5 = 0. Diện tích tam giác ABC bằng

Xem đáp án » 06/12/2023 992

Câu 4:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2; –1), B(1; 2) và C(2; –4). Diện tích tam giác ABC là

Xem đáp án » 06/12/2023 769

Câu 5:

Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: mx – y – 4 = 0; d2: –mx – y – 4 = 0. Gọi S là tập hợp các giá trị nguyên dương của m để tam giác tạo thành bởi d1, d2 và trục hoành có diện tích lớn hơn 8. Số phần tử của tập hợp S là

Xem đáp án » 06/12/2023 744

Câu 6:

Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 1). Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A, B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là

Xem đáp án » 06/12/2023 738

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store