Câu hỏi:
06/12/2023 3,891Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D
Đường tròn (C) tiếp xúc với trục Ox khi d(I, Ox) = R với I và R lần lượt là tâm và bán kính của đường tròn (C).
Xét phương trình đường tròn: x2 + y2 + 6x + 5y + 9 = 0 có và .
d(I, Ox) = . Vậy (C) tiếp xúc với trục Ox.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 321
Đã bán 121
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y + 3 = 0. Tiếp tuyến của đường tròn (C) song song với đường thẳng Δ: 3x + 4y + 1 = 0 có phương trình là
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho điểm M(–3; 1) và đường tròn (C): x2 + y2 – 2x – 6y + 6 = 0. Gọi T1, T2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Khoảng cách từ O đến đường thẳng T1T2 là
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y + 5 = 0 và đường thẳng d: 2x + (m – 2) y – m – 7 = 0. Tổng các giá trị của m sao cho đường thẳng d là tiếp tuyến của đường tròn (C) là
Câu 4:
Trong mặt phẳng tọa độ Oxy, đường tròn x2 + y2 – 1 = 0 tiếp xúc với đường thẳng nào trong các đường thẳng dưới đây?
Câu 5:
Trong mặt phẳng tọa độ Oxy, phương trình tiếp tuyến của đường tròn (C): (x – 2)2 + ( y + 4)2 = 25 vuông góc với đường thẳng 3x – 4y + 5 = 0 là
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình: x2 + y2 – 4x + 8y + 18 = 0. Phương trình tiếp tuyến của đường tròn (C) đi qua A(1; –3) là
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận