Câu hỏi:

13/07/2024 2,245

Rút gọn biểu thức: \(Q = \frac{{18}}{{\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - \frac{3}{{{x^2} - 6x + 9}} - \frac{x}{{{x^2} - 9}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện xác định của Q là: x ≠ ± 3.

Ta có \(Q = \frac{{18}}{{\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - \frac{3}{{{x^2} - 6x + 9}} - \frac{x}{{{x^2} - 9}}\)

\( = \frac{{18}}{{\left( {x - 3} \right)\left( {x - 3} \right)\left( {x + 3} \right)}} - \frac{3}{{{{\left( {x - 3} \right)}^2}}} - \frac{x}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)

\( = \frac{{18}}{{{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} - \frac{{3\left( {x + 3} \right)}}{{{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} - \frac{{x\left( {x - 3} \right)}}{{{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}}\)

\( = \frac{{18 - 3\left( {x + 3} \right) - x\left( {x - 3} \right)}}{{{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}}\)

\( = \frac{{18 - 3x - 9 - {x^2} + 3x}}{{{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}}\)

\( = \frac{{ - {x^2} + 9}}{{{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}}\)

\( = \frac{{\left( {3 - x} \right)\left( {3 + x} \right)}}{{{{\left( {3 - x} \right)}^2}\left( {x + 3} \right)}} = \frac{1}{{3 - x}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\frac{{5x + {y^2}}}{{{x^2}y}} - \frac{{5y - {x^2}}}{{x{y^2}}}\)

\( = \frac{{y\left( {5x + {y^2}} \right)}}{{{x^2}{y^2}}} - \frac{{x\left( {5y - {x^2}} \right)}}{{{x^2}{y^2}}}\) (Mẫu thức chung là: x2y2)

\( = \frac{{5xy + {y^3}}}{{{x^2}{y^2}}} - \frac{{5xy - {x^3}}}{{{x^2}{y^2}}}\)

\( = \frac{{5xy + {y^3} - 5xy + {x^3}}}{{{x^2}{y^2}}} = \frac{{{x^3} + {y^3}}}{{{x^2}{y^2}}}\).

Lời giải

Ta có:

\(P = \frac{{{x^2} + 2x}}{{{x^3} - 1}} - \frac{1}{{{x^2} - x}} - \frac{1}{{{x^2} + x + 1}}\) (x ≠ 0, x ≠ 1)

\( = \frac{{{x^2} + 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{1}{{x\left( {x - 1} \right)}} - \frac{1}{{{x^2} + x + 1}}\)

\( = \frac{{\left( {{x^2} + 2x} \right)x}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} + x + 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {{x^2} + 2x} \right)x - \left( {{x^2} + x + 1} \right) - x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^3} + 2{x^2} - {x^2} - x - 1 - {x^2} + x}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{{{x^3} - 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{1}{x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP