Câu hỏi:
13/07/2024 139Hai công nhân cùng làm một mặt hàng. Người công nhân thứ nhất làm được 1 000 sản phẩm trong x (giờ); người công nhân thứ hai làm được 1 250 sản phẩm trong x + 10 (giờ).
Viết các phân thức biểu thị số sản phẩm người công nhân thứ nhất làm được trong 1 giờ; số sản phẩm người công nhân thứ hai làm được trong 1 giờ; tỉ số giữa năng suất của người công nhân thứ hai so với năng suất của người công nhân thứ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phân thức biểu thị số sản phẩm người công nhân thứ nhất làm được trong 1 giờ là:
\(\frac{{1000}}{x}\) (sản phẩm).
Phân thức biểu thị số sản phẩm người công nhân thứ hai làm được trong 1 giờ là:
\(\frac{{1250}}{{x + 10}}\) (sản phẩm).
Tỉ số giữa năng suất của người công nhân thứ hai so với năng suất của người công nhân thứ nhất là: \(\frac{{1250}}{{x + 10}}:\frac{{1000}}{x} = \frac{{1250}}{{x + 10}}.\frac{x}{{1000}} = \frac{{5x}}{{4\left( {x + 10} \right)}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biểu thức
P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\).
Viết điều kiện xác định của P.
Câu 2:
Cho biểu thức
P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\).
Rút gọn biểu thức P.
Câu 3:
Thực hiện phép tính:
\(\left( {\frac{1}{{{x^2} + x}} - \frac{{2 - x}}{{x + 1}}} \right):\left( {\frac{1}{x} + x - 2} \right)\);
Câu 4:
Thực hiện phép tính:
\(\left( {\frac{{3x}}{{1 - 3x}} + \frac{{2x}}{{3x + 1}}} \right):\frac{{6{x^2} + 10x}}{{1 - 6x + 9{x^2}}}\).
Câu 5:
Rút gọn các biểu thức sau:
\(\left( {\frac{9}{{{x^3} - 9x}} + \frac{1}{{x + 3}}} \right):\left( {\frac{{x - 3}}{{{x^2} + 3x}} - \frac{x}{{3x + 9}}} \right)\);
Câu 6:
Tính:
\(\frac{{{x^2} - {y^2}}}{{6{x^2}y}}:\frac{{x + y}}{{3xy}}\);
Câu 7:
Cho biểu thức
P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\).
Tính giá trị của P khi \(x = \frac{1}{2}\).
về câu hỏi!