Câu hỏi:

13/07/2024 3,580

Cho hai hàm số y = 2x + 3m và y = (2m + 1)x – 5. Tìm các giá trị của m để đồ thị của hai hàm số là:

Hai đường thẳng song song;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để đồ thị của hai hàm số là hai đường thẳng song song thì:

2 = 2m + 1 và 3m ≠ –5

2m = 1 và m ≠\( - \frac{5}{3}\)

m = \(\frac{1}{2}\) và m ≠\( - \frac{5}{3}\)

Vậy m = \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do hàm số bậc nhất cần tìm có đồ thị là đường thẳng song song với đường thẳng y = –2x + 1 nên nó có dạng y = –2x + b với b ≠ 1.

Vì đồ thị hàm số đi qua điểm (–1; 4) nên ta có:

4 = –2 . (–1) + b

4 = 2 + b

b = 2 (thỏa mãn)

Vậy hàm số cần tìm là y = – 2x + 2.

Lời giải

- Ta có 2 ≠ –3 nên

+ hai đường thẳng y = 2x + 1 và y = –3x + 1 cắt nhau,

+ hai đường thẳng y = 2x + 1 và y = –3x + 2 cắt nhau,

+ hai đường thẳng y = 2x + 2 và y = –3x + 1 cắt nhau,

+ hai đường thẳng y = 2x + 2 và y = –3x + 2 cắt nhau.

- Ta có –3 = –3 và 1 ≠ 2 nên hai đường thẳng y = –3x + 1 và y = –3x + 2 song song với nhau.

- Ta có 2 = 2 và 1 ≠ 2 nên hai đường thẳng y = 2x + 1 và y = 2x + 2 song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP