Câu hỏi:
13/07/2024 476Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Tia phân giác của \[\widehat {ABC}\] cắt AC tại D.
Tia phân giác của \[\widehat {ACB}\]cắt BD ở I. Gọi M là trung điểm BC. Chứng minh \[\widehat {BIM}\]= 90°.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét ∆ABD vuông tại A, áp dụng định lý Pythagore, ta có:
BD2 = AB2 + AD2 = 62 + 32 = 45 , suy ra \[BD = 3\sqrt 5 \] (cm).
Ta có CI là đường phân giác của \[\widehat {DCB}\] trong ∆CBD nên
\[\frac{{ID}}{{IB}} = \frac{{CD}}{{CB}} = \frac{5}{{10}} = \frac{1}{2}\] hay \[\frac{{ID}}{1} = \frac{{IB}}{2}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{ID}}{1} = \frac{{IB}}{2} = \frac{{ID + IB}}{{1 + 2}} = \frac{{BD}}{3} = \frac{{3\sqrt 5 }}{3} = \sqrt 5 \].
Suy ra ID = \[\sqrt 5 \](cm) và IB = 2\[\sqrt 5 \](cm).
Ta có: MB = MC = \[\frac{1}{2}\]BC = 5 (cm)
Xét ∆IDC và ∆IMC có
IC chung
\[\widehat {DCI} = \widehat {MCI}\]
DC = MC
Do đó ∆IDC = ∆IMC (c.g.c).
Suy ra ID = IM = \[\sqrt 5 \](cm)
Ta có IM2 + IB2 = \[{\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2}\]= 25 và MB2 = 52 = 25.
Do đó IM2 + IB2 = MB2.
Áp dụng định lý Pythagore đảo trong ∆IBM, suy ra ∆IBM vuông tại I.
Suy ra \[\widehat {BIM}\]= 90°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA (Hình 6). Đẳng thức nào sau đây đúng?
A. SMNPQ = \[\frac{1}{4}\]SABCD ;
B. SMNPQ = \[\frac{1}{3}\]SABCD ;
C. SMNPQ = SABCD ;
D. SMNPQ = \[\frac{1}{2}\]SABCD .
Câu 2:
Cho tam giác ABC có cạnh BC = 10 cm. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC lần lượt tại M và N. Tính độ dài DM và EN.
Câu 3:
Trong Hình 2 có \[{\widehat M_1} = {\widehat M_2}\]. Đẳng thức nào sau đây đúng?
A. \[\frac{{MN}}{{MK}} = \frac{{MK}}{{KP}}\];
B. \[\frac{{MN}}{{KP}} = \frac{{MP}}{{NP}}\];
C. \[\frac{{MK}}{{MP}} = \frac{{NK}}{{KP}}\];
D. \[\frac{{MN}}{{NK}} = \frac{{MP}}{{KP}}\].
Câu 4:
Cho tam giác MNP có có M'N' // MN (Hình 3). Đẳng thức nào sau đây sai?
A. \[\frac{{PM'}}{{PM}} = \frac{{PN}}{{PN'}}\];
B. \[\frac{{PM'}}{{PM}} = \frac{{PN'}}{{PN}}\];
C. \[\frac{{PM'}}{{M'M}} = \frac{{PN'}}{{N'N}}\];
D. \[\frac{{M'M}}{{PM}} = \frac{{N'N}}{{PN}}\].
Câu 5:
Để đo khoảng cách giữa hai điểm A và B bị ngăn cách bởi một hồ nước, người ta đóng các cọc tại các vị trí A, B, M, N, O như Hình 9 và đo được MN = 45 m. Tính khoảng cách AB biết M, N lần lượt là trung điểm OA, OB.
Câu 6:
Cho tam giác ABC đều cạnh bằng 1 dm. Gọi E, F lần lượt là trung điẻm AB, AC. Chu vi hình thang EFCB bằng:
A. \[\frac{5}{2}\]dm ;
B. 3 dm ;
C. 3,5 dm ;
D. 4 dm .
về câu hỏi!