Câu hỏi:

13/07/2024 1,236

Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Tia phân giác của \[\widehat {ABC}\] cắt AC tại D.

Tia phân giác của \[\widehat {ACB}\]cắt BD ở I. Gọi M là trung điểm BC. Chứng minh \[\widehat {BIM}\]= 90°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tia phân giác của góc ACB cắt BD ở I. Gọi M là trung điểm BC. Chứng  (ảnh 1)

Xét ∆ABD vuông tại A, áp dụng định lý Pythagore, ta có:

BD2 = AB2 + AD2 = 62 + 32 = 45 , suy ra \[BD = 3\sqrt 5 \] (cm).

Ta có CI là đường phân giác của \[\widehat {DCB}\] trong ∆CBD nên

\[\frac{{ID}}{{IB}} = \frac{{CD}}{{CB}} = \frac{5}{{10}} = \frac{1}{2}\] hay \[\frac{{ID}}{1} = \frac{{IB}}{2}\].

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{ID}}{1} = \frac{{IB}}{2} = \frac{{ID + IB}}{{1 + 2}} = \frac{{BD}}{3} = \frac{{3\sqrt 5 }}{3} = \sqrt 5 \].

Suy ra ID = \[\sqrt 5 \](cm) và IB = 2\[\sqrt 5 \](cm).

Ta có: MB = MC = \[\frac{1}{2}\]BC = 5 (cm)

Xét ∆IDC và ∆IMC có

IC chung

\[\widehat {DCI} = \widehat {MCI}\]

DC = MC

Do đó ∆IDC = ∆IMC (c.g.c).

Suy ra ID = IM = \[\sqrt 5 \](cm)

Ta có IM2 + IB2 = \[{\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2}\]= 25 và MB2 = 52 = 25.

Do đó IM2 + IB2 = MB2.

Áp dụng định lý Pythagore đảo trong ∆IBM, suy ra ∆IBM vuông tại I.

Suy ra \[\widehat {BIM}\]= 90°.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho hình vuông ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA  (ảnh 2)

ABCD là hình vuôngM, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên

AM = MB = BN = NC = CP = PD = DQ = QA.

Suy ra AM2 + QA2 = MB2 + BN2 = NC2 + CP2 = PD2 + DQ2,

Khi đó MQ2 = MN2 = NP2 = PQ2 hay MQ = MN = NP = PQ,

Do đó tứ giác MNPQ là hình thoi       (1)

Vì AM = AQ nên ∆AMQ vuông cân tại A, suy ra \[\widehat {AMQ}\] = 45°.

Vì BM = BN nên ∆BMN vuông cân tại B, suy ra \[\widehat {BMN}\] = 45°.

\[\widehat {AMQ}\]+ \[\widehat {QMN}\] + \[\widehat {BMN}\] = 180°, suy ra \[\widehat {QMN}\] = 90°       (2)

Từ (1) và (2) suy ra MNPQ là hình vuông.

 SABCD = AB2 ; SMNPQ = MQ2

MQ2 = AM2 + QA2 = \[{\left( {\frac{1}{2}AB} \right)^2}\]+ \[{\left( {\frac{1}{2}AD} \right)^2}\]

= \[\frac{1}{4}\]AB2 + \[\frac{1}{4}\]AD2 = \[\frac{1}{4}\]AB2 + \[\frac{1}{4}\]AB2 = \[\frac{1}{2}\]AB2.

Do đó SMNPQ = \[\frac{1}{2}\]SABCD.

Lời giải

Cho tam giác ABC có cạnh BC = 10 cm. Trên cạnh AB lấy các điểm D, E sao cho  (ảnh 1)

Xét ∆ABC có DM // BC, theo hệ quả của định lí Thalès, ta có:

\[\frac{{DM}}{{BC}} = \frac{{AD}}{{AB}} = \frac{1}{3}\].

Suy ra DM = \[\frac{1}{3}\]BC = \[\frac{1}{3}\].10 = \[\frac{{10}}{3}\] (cm).

• Xét ∆ABC có EN // BC, theo hệ quả của định lí Thalès, ta có:

\[\frac{{EN}}{{BC}} = \frac{{AE}}{{AB}} = \frac{2}{3}\].

Suy ra EN = \[\frac{2}{3}\]BC = \[\frac{2}{3}\].10 = \[\frac{{20}}{3}\] (cm).

Vậy DM = \[\frac{{10}}{3}\] cm và EN = \[\frac{{20}}{3}\] cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay