Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F
a) Tam giác DBF là tam giác gì?
b) Chứng minh tứ giác DCEF là hình bình hành.
Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F
a) Tam giác DBF là tam giác gì?
b) Chứng minh tứ giác DCEF là hình bình hành.
Quảng cáo
Trả lời:


a) Ta có: DF // AC nên:
Suy ra: tam giác DBF cân tại D
b) Từ câu a ta có: DB = DF
Mà DB = CE theo giả thiết nên DF = CE
Lại có: DF // AC nên DF // CE
Xét tứ giác DCEF có: DF // CE và DF = CE
Vậy DCEF là hình bình hành.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
Suy ra: AH = EF
b) Xét tam giác AHE và tam giác AHB có:
chung
⇒ ∆AEH ∽ ∆AHB (g.g)
⇒
⇒ AE = .
Lời giải

a. BD và CE là 2 đường trung tuyến.
⇒ EA = EB, DA = DC
Có ΔABC cân tại A ⇒ AB=AC
⇒ AE =AD
⇒ ΔAED cân tại A
b. Xét ΔABD và ΔACE có:
chung
AB = AC (GT)
AD = AE (chứng minh trên)
⇒ ΔABD = ΔACE (c.g.c)
c. EA = EB, DA=DC
⇒ ED là đường trung bình của ΔABC
⇒ ED //BC
⇒ tứ giác BCDE là hình thang
Lại có: ΔABD = ΔACE ⇒ BD = CE (Hai cạnh tương ứng)
⇒ BCDE là hình thang cân.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.