Câu hỏi:
11/07/2024 2,297Cho hình chóp SABCD có đáy là hình bình hành ABCD. Gọi M, N lần lượt là trung điểm AB, SC.
a) Xác định giao điểm I, K của AN, MN với (SBD).
b) Tính tỉ số .
c) Chứng minh B, I, K thẳng hàng. Tính tỉ sốSách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Gọi AC ∩ BD = O, SO ∩ AN = I
⇒ AN ∩ (SBD) = I
CM ∩ BO = E, SE ∩ MN = K ⇒ MN ∩ (SBD) = K
b, c) Ta có M, N là trung điểm AB, SC; O là trung điểm AC, BD
⇒ I, E là trọng tâm SAC, BAC
⇒
Ta có: M, K, N thẳng hàng; M ∈ CE, K ∈ SE, N ∈ SC
Suy ra:
⇒
⇒
⇒
Vậy B, I, K thẳng hàng (định lý Menelauyt)
Ta có: S, K, E thẳng hàng nên
⇒
⇒
Lại có từ S, K, E thẳng hàng nên
⇒
⇒
⇒
Hay
Suy ra: .CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F
a) Tam giác DBF là tam giác gì?
b) Chứng minh tứ giác DCEF là hình bình hành.
Câu 3:
Một khu vườn hình vuông có cạnh bằng 20m, người ta làm một lối đi xung quanh vườn có bể rộng x (m).
a) Viết biểu thức biểu diễn diện tích đất còn lại của khu vườn.
b) Tìm x biết diện tích dùng làm lối đi là 144m2.
Câu 5:
Bác Bình gửi tiết kiệm 500 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức lãi suất kép. Nếu sau đúng một năm bác Bình mới đến ngân hàng rút tiền thì số tiền lãi là bao nhiêu?
Câu 6:
Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến. Chứng minh:
a. Tam giác ADE cân tại A.
b. ∆ABD = ∆ACE.
c. BCDE là hình thang cân.
về câu hỏi!