Câu hỏi:
11/07/2024 313Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét (O) có PM // AB
⇒ 2 cung và bị chắn bởi 2 dây trên sẽ bằng nhau.
mà BM = BN (∆BMN cân tại B vì có BE vừa là đ/c, đường trung tuyến)
⇒
⇒
b) Xét (O) có OI đi qua điểm chính giữa của PM (giả thiết)
⇒ OI vuông góc với dây PM tại K
⇒
Xét tứ giác OKME có 3 góc vuông: (cmt),
( MN vuông góc với OB tại E)
(vì PM//AB, AB vuông góc với MN ⇒ PM vuông góc với MN tại M)
⇒ OKME là hình chữ nhật
c) Ta có: (vì 2 góc đồng vị, MP//AB)
mà (∆POK vuông tại K)
⇒
⇒
⇒ P, O, N thẳng hàng
- Xét ∆PMN có KE đường trung bình (K là trung điểm PM, E là trung điểm MN)
⇒ KE//PN.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!