Câu hỏi:

11/07/2024 504

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N.  (ảnh 1)

a) Xét (O) có PM // AB

2 cung APBM bị chắn bởi 2 dây trên sẽ bằng nhau.

mà BM = BN (BMN cân tại B vì có BE vừa là đ/c, đường trung tuyến)

⇒ BM=BN

⇒ AP=BN

b) Xét (O) có OI đi qua điểm chính giữa của PM (giả thiết)

OI vuông góc với dây PM tại K

⇒ OKM^=90°

Xét tứ giác OKME có 3 góc vuông: OKM^=90° (cmt),

MEO^=90° ( MN vuông góc với OB tại E)

EMK^=90° (vì PM//AB, AB vuông góc với MN PM vuông góc với MN tại M)

OKME là hình chữ nhật

c) Ta có: OPI ^=NOE^ (vì 2 góc đồng vị, MP//AB)

OPI ^+POI^=90° (POK vuông tại K)

⇒ NOE ^+POI^=90°

⇒ NOE ^+POI^+IOE^=90°+90°=180°

P, O, N thẳng hàng

- Xét PMN có KE đường trung bình (K là trung điểm PM, E là trung điểm MN)

KE//PN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu am - an, mn - nc , mn - pn, bp - cp (ảnh 1)

AMAN=AM+NA=NM

N là trung điểm AC nên AN=NC

MNNC=MNAN=MN+NA=MA

Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình

Suy ra: MN // BC; MN=12BC=BP=PC

=> MN=PC

MNPN=PCPN=NC

BPCP=BP+PC=BC

Lời giải

Để A ∩ B = thì: m+11m3m2m3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP