Câu hỏi:

12/07/2024 763

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho  Chứng minh MN luôn đi qua một điểm cố định. (ảnh 1)

Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

Theo giả thiết có: MN=2MAMB+MC

⇒ MN=2MAMB+MC=2MI+2IAMIIB+MI+IC

MN=2MI+2IAIB+ICMN=2MI

Suy ra I là trung điểm MN hay MN đi qua I cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu am - an, mn - nc , mn - pn, bp - cp (ảnh 1)

AMAN=AM+NA=NM

N là trung điểm AC nên AN=NC

MNNC=MNAN=MN+NA=MA

Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình

Suy ra: MN // BC; MN=12BC=BP=PC

=> MN=PC

MNPN=PCPN=NC

BPCP=BP+PC=BC

Lời giải

Để A ∩ B = thì: m+11m3m2m3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP