Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH. Chứng minh:
a) ΔAHF = ΔADC.
b) AC ⊥ HF.
Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH. Chứng minh:
a) ΔAHF = ΔADC.
b) AC ⊥ HF.
Quảng cáo
Trả lời:


Gọi K là giao điểm của AC và HF
a) Do ABEF và ADGH đều là hình vuông nên
AH = BA, AH = DA
Do ABCD là hình bình hành nên BA=DC.
Suy ra AF = DC
Ta chứng minh được và
Suy ra
Xét hai tam giác HAF và ADC, ta có:
AH = DA
AF = DA
Suy ra ΔHAF = ΔADC (c.g.c)
b) Ta có: và nên
Mà (vì ΔHAF = ΔADC), suy ra
Trong tam giác AHK, ta có:
Suy ra
Vậy AK ⊥ HK hay AC ⊥ HF.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

*
N là trung điểm AC nên
*
Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình
Suy ra: MN // BC;
=>
*
*
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.