Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
x2 – xy + y + 2 = 0
⇔ x2 – 1 – xy + y = -3
⇔ (x – 1)(x + 1) – y(x – 1) = -3
⇔ (x – 1)(x + 1 – y) = -3
Vì x, y là số nguyên nên x – 1 và x – y + 1 là số nguyên
Nên x – 1 và x – y + 1 đều là ước của -3
Suy ra: x – 1; x – y + 1 ∈ {-3; -1; 1; 3}
Ta có bảng:
x – 1 |
-3 |
-1 |
1 |
3 |
x – y + 1 |
1 |
3 |
-3 |
-1 |
x |
-2 |
0 |
2 |
4 |
y |
-2 |
-2 |
6 |
6 |
Vậy (x;y) ∈ {(-2;-2), (0;-2), (2;6), (4;6)}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!