Câu hỏi:

12/07/2024 5,093

Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.

Chứng minh:

a) Tứ giác BEDC là hình thang cân.

b) BE = ED = DC.

c) Bốn điểm A, I, O, J thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE. (ảnh 1)

 a) Ta có: ABC^=ACB^ (vì tam giác ABC cân tại A)

⇒ DBC^=ECB^

Xét tam giác DBC và tam giác ECB có:

DCB^=EBC^ (vì ABC^=ACB^)

BC là cạnh chung

DBC^=ECB^

∆DBC = ∆ECB (g.c.g)

BE = CD mà AB = AC

Nên ta có: BEAB=CDAC

ED // BC

b) Từ phần a trên đã có BE = CD

Có: EDB^=DBC^ (so le trong)

EBD^=DBC^ (BD là phân giác)

⇒ EBD^=EDB^

Tam giác BED cân tại E

BE = ED

BE = ED = CD.

c) AI cắt ED tại J', ta chứng minh J' ≡ J

Từ tính chất tam giác đồng dạng ta có:

EJ'BI=AEAB=EDBC=ED2BI

EJ' = ED2 J' là trung điểm ED J' ≡ J

Vậy A, I, J thẳng hàng

*OI cắt ED tại J" ta chứng minh J" ≡ J

Xét tam giác ODE và tam giác OBC có:

DOE^=BOC^ (đối đỉnh)

EDO^=OBC^ (so le trong, DE // BC)

∆ODE ∆OBC (g.g)

⇒ ODOB=EDBC

Mặt khác: J''DO^=OBI^ (so le trong), J''OD^=IOB^ (đối đỉnh)

∆J"DO ∆IBO (g.g)

⇒ J"DIB=ODOB=EDBC=ED2BI

⇒ J"D=ED2

J" là trung điểm ED J" ≡ J

Tóm lại A, I, O, J thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu AMAN,MNNC,MNPN,BPCP

Xem đáp án » 18/02/2024 18,432

Câu 2:

Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).

Xem đáp án » 12/07/2024 15,700

Câu 3:

Cho ab+c+ba+c+ca+b=1 . Chứng minh rằng a2b+c+b2a+c+c2a+b=0

Xem đáp án » 12/07/2024 11,579

Câu 4:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m

 có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.

Xem đáp án » 12/07/2024 10,245

Câu 5:

Cho hình chóp S.ABCD, đáy là hình bình hành ABCD. Gọi M, N lần lượt là trung điểm SA, CD. Chứng minh MN // (SBC). 

Xem đáp án » 11/07/2024 8,785

Câu 6:

cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc với AD, CK vuông góc với AB.

a, Chứng minh tam giác BCK đồng dạng tam giác DCH.

b, Chứng minh tam giác CKH đồng dạng tam giác BCA.

c, Chứng minh HK = AC.sinBAD^

d, Tính diện tích của tứ giác AKCH nếu , AB = 4cm, AC = 5cm.

Xem đáp án » 12/07/2024 6,417

Câu 7:

Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?

Xem đáp án » 12/07/2024 6,354
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay