Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
Quảng cáo
Trả lời:


a) Ta có: (vì tam giác ABC cân tại A)
⇒
Xét tam giác DBC và tam giác ECB có:
(vì )
BC là cạnh chung
⇒ ∆DBC = ∆ECB (g.c.g)
⇒ BE = CD mà AB = AC
Nên ta có:
⇒ ED // BC
b) Từ phần a trên đã có BE = CD
Có: (so le trong)
mà (BD là phân giác)
⇒
⇒ Tam giác BED cân tại E
⇒ BE = ED
⇒ BE = ED = CD.
c) AI cắt ED tại J', ta chứng minh J' ≡ J
Từ tính chất tam giác đồng dạng ta có:
⇒ EJ' = ⇒ J' là trung điểm ED ⇒ J' ≡ J
Vậy A, I, J thẳng hàng
*OI cắt ED tại J" ta chứng minh J" ≡ J
Xét tam giác ODE và tam giác OBC có:
(đối đỉnh)
(so le trong, DE // BC)
∆ODE ∽ ∆OBC (g.g)
⇒
Mặt khác: (so le trong), (đối đỉnh)
⇒ ∆J"DO ∽ ∆IBO (g.g)
⇒
⇒
⇒ J" là trung điểm ED ⇒ J" ≡ J
Tóm lại A, I, O, J thẳng hàng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

*
N là trung điểm AC nên
*
Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình
Suy ra: MN // BC;
=>
*
*
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.