Câu hỏi:
12/07/2024 1,894Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Vẽ tia Ax nằm giữa tia AB và tia AO cắt đường tròn (O) tại hai điểm C và D (C nằm giữa A và D). Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H.
a, Tính tích OH.OA theo R.
b, Chứng minh 4 điểm A, B, M, O cùng thuộc một đường tròn.
c, Gọi E là giao điểm của OM với HB. Chứng minh ED là tiếp tuyến của đường tròn (O;R).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét tam giác AMO vuông tại A có AH vuông góc MO
Áp dụng hệ thức lượng: OH.OM = OA2 = R2
b) Xét (O) có M là trung điểm CD nên OM vuông góc CD (bán kính vuông góc dây cung)
⇒
Lại có: BA là tiếp tuyến nên
Suy ra: M, B thuộc đường tròn đường kính OA
Hay A, B, M, O cùng thuộc một đường tròn.
c) Xét tam giác OHE và tam giác OMA có:
Chung
⇒ ∆OHE ∽ ∆OMA (g.g)
⇒
Suy ra:
Xét tam giác ODE và tam giác OMD có:
Chung
⇒ ∆ODE ∽ ∆OMD (c.g.c)
⇒
Suy ra: OD ⊥ ED mà D thuộc (O) nên ED là tiếp tuyến của (O).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!