Câu hỏi:
12/07/2024 333Cho A = 2 + 22 +....... + 260.
a) Thu gọn tổng A.
b) Chứng tỏ rằng: A chia hết cho 3, 5, 7.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) A = 2 + 22 +....... + 260
2A = 22 + 23 +....... + 261
2A – A = (22 + 23 +....... + 261) – (2 + 22 +....... + 260)
A = 261 – 2.
b) A = 2 + 22 +....... + 260
A = (2 + 22) + (23 + 24) +....... + (259 + 260)
A = 2(1 + 2) + 23(1 + 2) + … + 259(1 + 2)
A = (1 + 2)(2 + 23 + … + 259)
A = 3.(2 + 23 + … + 259) ⋮ 3
Lại có: A = 2 + 22 +....... + 260
A = (2 + 22 + 23) + (24 + 25 + 26) + ....... + (258 + 259 + 260)
A = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 258(1 + 2 + 22)
A = (1 + 2 + 22)(2 + 24 + … + 258)
A = 7.(2 + 24 + … + 258) ⋮ 7
Lại xét: A = 2 + 22 +....... + 260
A = (2 + 22 + 23 + 24)+ ....... + (257 + 258 + 259 + 260)
A = 2(1 + 2 + 22 + 23) + … + 257(1 + 2 + 22 + 23)
A = (1 + 2 + 22 + 23)(2 + … + 257)
A = 15.(1 + 2 + 22 + 23)
A = 3.5.(1 + 2 + 22 + 23) ⋮ 5
Vậy A ⋮ 3, 5, 7.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!