Câu hỏi:

11/07/2024 1,648

Chứng minh tồn tại vô hạn các số nguyên tố.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử chỉ có hữu hạn các số nguyên tố là p1; p2; p3; …; pn và giả sử p1 < p2 < p3 < ... < pn.

Xét tích A = p1. p2. p3. …pn + 1. Rõ ràng A > pn nên A là hợp số, do đó A có ít nhất một ước nguyên tố p.

Khi đó p1; p2; p3; …; pn là tất cả các số nguyên tố nên tồn tại I thuộc {1, 2, …, n} sao cho p = pi.

Như vậy A chia hết cho p; p1; p2; p3; …; pn chia hết cho p nên 1 chia hết cho p, mâu thuẫn.

Do đó, giả sử chỉ có hữu hạn số nguyên tố là sai.

Vậy có vô hạn các số nguyên tố.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu am - an, mn - nc , mn - pn, bp - cp (ảnh 1)

AMAN=AM+NA=NM

N là trung điểm AC nên AN=NC

MNNC=MNAN=MN+NA=MA

Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình

Suy ra: MN // BC; MN=12BC=BP=PC

=> MN=PC

MNPN=PCPN=NC

BPCP=BP+PC=BC

Lời giải

Để A ∩ B = thì: m+11m3m2m3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP