Câu hỏi:
12/07/2024 204Một con tàu khởi hành từ đảo A, đi thẳng về hướng đông 10 km rồi đi thẳng tiếp 10 km về hướng nam thì tới đảo B (H.4.2). Nếu từ đảo A, tàu đi thẳng (không đổi hướng) tới đảo B, thì phải đi theo hướng nào và quãng đường phải dài bao nhiêu kilômét?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có hình vẽ sau:
Vì góc giữa hướng đông và hướng nam là bằng 90 độ nên
do đó tam giác AHB vuông tại H.
Xét ΔAHB vuông tại H, áp dụng định lí Py – ta – go ta có: AB2 = AH2 + BH2
Thay số: AB2 = 102 + 10 = 100 + 100 = 200
⇔
ΔAHB vuông tại H, có AH = BH = 10 km nên ΔAHB cân tại H
Suy ra:
Do đó nếu đi từ đảo A, tàu đi thẳng (không đổi hướng) tới đảo B thì phải đi theo đường thẳng AB chính là hướng đông nam, tạo với hướng đông một góc 45°.
Vậy nếu từ đảo A, tàu đi thẳng (không đổi hướng) tới đảo B, thì phải đi theo hướng đông nam, tạo với hướng đông một góc 45° và đi quãng đường dài
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!