Câu hỏi:

12/07/2024 3,295

Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh BC.BE.CF = AH3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh BC.BE.CF = AH3. (ảnh 1)

Áp dụng hệ thức lượng trong các tam giác vuông ABC, AHB, AHC ta có:

Lại có: BH2 = AB.BE BE = BH2AB

CH2 = AC.CF CF = CH2AC

Khi đó: BE.CF=BH2AB.CH2AC=AH4AB.AC (Vì AH2 = BH.CH)

Vậy BC.BE.CF = AB.ACAH.AH4AB.AC=AH3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu am - an, mn - nc , mn - pn, bp - cp (ảnh 1)

AMAN=AM+NA=NM

N là trung điểm AC nên AN=NC

MNNC=MNAN=MN+NA=MA

Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình

Suy ra: MN // BC; MN=12BC=BP=PC

=> MN=PC

MNPN=PCPN=NC

BPCP=BP+PC=BC

Lời giải

Để A ∩ B = thì: m+11m3m2m3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP