Câu hỏi:
18/02/2024 194Cho tam giác ABC có M là trung điểm của cạnh BC. Vẽ các điểm F, E, G sao cho B, M, C theo thứ tự là trung điểm của AF, AE và AG. Chứng minh ba điểm F, E, G thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
xét ΔBME và ΔCMA có:
BM = MC (giả thiết)
(đối đỉnh)
ME = MA
⇒ ΔBME = ΔCMA (c.g.c)
Suy ra: BE = AC và
Mà 2 góc ở vị trí so le trong nên BE // AC
Suy ra: (2 góc đồng vị)
Xét ΔFBE và ΔBAC có:
FB = BA
BE = AC
⇒ ΔFBE = ΔBAC (c.g.c)
⇒
Mà 2 góc này ở vị trí đồng vị nên BC // EF (1)
chứng minh tương tự ta có ΔEMC = ΔAMB(c.g.c)
⇒ AB = EC (2 cạnh tương ứng) và
chứng minh tương tự ta có ΔACB = ΔCGE (c.g.c)
Suy ra: mà 2 góc này ở vị trí đồng vị nên BC // EG (2)
Từ (1) và (2) ta có FE // BC; EG // BC mà theo tiên đề Ơ-clit thì qua điểm E nằm ngoài đường thẳng BC chỉ có 1 đường thẳng song song vói đường thẳng đó
nên FE trùng EG hay F; E; G thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!