Câu hỏi:
12/07/2024 1,314Giả sử a, b là 2 số thực phân biệt thỏa mãn: a2 + 3a = b2 + 3b = 2. Chứng minh rằng a3 + b3 = -45.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
a2 + 3a = b2 + 3b
⇔ (a2 – b2) + (3a – 3b) = 0
⇔ (a – b)(a +b + 3) = 0
Vì a và b phân biệt nên a – b ≠ 0
Suy ra: a + b + 3 = 0 hay a + b = -3
Suy ra: (a + b)2 = 9
⇔ a2 + 2ab + b2 = 9 (1)
Mà a2 + 3a = b2 + 3b = 2
Suy ra: a2 + b2 + 3a + 3b = 2 + 2 = 4
a2 + b2 = 4 – 3(a + b) = 4 – 3.(-3) = 13 (2)
Từ (1) và (2) suy ra: 2ab = -4 hay ab = -2 (2)
Lấy (2) + (3): a2 - ab + b2 = 15
Do đó: a3 + b3 = (a + b)(a2 – ab + b2) = 15.(-3) = -45.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).
Câu 2:
Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m
có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Câu 4:
Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?
Câu 7:
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE.
Chứng minh:
a) Tứ giác BEDC là hình thang cân.
b) BE = ED = DC.
c) Bốn điểm A, I, O, J thẳng hàng.
về câu hỏi!