Trong không gian cho hai hình vuông ABCD và ABC'D' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O'. Hãy xác định góc giữa hai đường thẳng AB và OO'?
Trong không gian cho hai hình vuông ABCD và ABC'D' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O'. Hãy xác định góc giữa hai đường thẳng AB và OO'?
A.
B.45
C. 90
D. 120
Quảng cáo
Trả lời:
Đáp án đúng là: C

Vì ABCD và ABC'D' là hình vuông nên AD // BC'; AD = BC'
⇒ ADBC' là hình bình hành
Mà O, O' là tâm của 2 hình vuông nên O, O' là trung điểm của BD và AC'
Do đó, OO' là đường trung bình của ADBC'.
Do đó, OO' song song với AD.
Mặt khác, AD vuông góc với AB nên OO' vuông góc với AD nên (OO', AB) = .
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 30
B. 45
C. 60
D. 90
Lời giải
Đáp án đúng là: D

Ta có:
AE // DH (do ABCD.EFGH là hình lập phương)
AE cắt AB tại A
⇒ (AB, DH) = (AE, AB)
Mà AE vuông góc với AB nên (AB, DH) = (AE, AB) = .
Lời giải
Đáp án đúng là: D

Gọi O là tâm của hình thoi ABCD
Ta có: OJ // CD
Nên (IJ, CD) = (IJ, OJ)
Nên góc giữa IOJ và CD bằng góc giữa IJ và OJ
Xét tam giác IOJ có:
Nên tam giác IOJ đều
Vậy (IJ, CD) = (IJ, OJ) = = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.