Câu hỏi:
26/02/2024 196Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AC, BC, BD, DA. Khẳng định nào sau đây là đúng nhất?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Đặt AB = AD = AC = a.
Ta có:
Do đó, AB vuông góc với CD.
Dễ thấy MN, PQ lần lượt là đường trung bình của các tam giác ABC và ABD.
Khi đó, MN // PQ // AB và MN = PQ = = nên tứ giác MNPQ là hình bình hành
Lại có:
MN // AB
NP // CD (do NP là đường trung bình của tam giác BCD)
AB ⊥ CD
Khi đó, MN ⊥ NP.
Do đó, MNPQ là hình chữ nhật.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN, SC) bằng:
Câu 3:
Cho tứ diện ABCD có AB = AC = AD và , . Gọi I, J lần lượt là trung điểm của AB và CD. Khẳng định nào sau đây là đúng?
Câu 5:
Cho hình chóp S.ABC có SA = SB = SC và . Khẳng định nào sau đây là đúng?
Câu 6:
Cho hai tam giác cân ABC và DBC có chung cạnh đáy BC nằm trong hai mặt phẳng khác nhau. Khẳng định nào sau đây là đúng nhất?
về câu hỏi!