Câu hỏi:

26/02/2024 904 Lưu

Cho bài toán sau:

Cho tứ diện ABCD. Chứng minh rằng nếu: AB.AC=AC.AD=AD.AB  thì AB vuông góc với CD, AC vuông góc với BD, AD vuông góc với BC. Điều ngược lại đúng không?

Sau đây là lời giải

Cho bài toán sau:  Cho tứ diện ABCD. Chứng minh rằng nếu: (ảnh 1)

Bước 1: AB.AC=AC.ADACABAD=0AC.DB=0

Do đó, AC vuông góc với BD.

Bước 2: Chứng minh tương tự, từ AC.AD=AD.AB   ta được AD vuông góc với BC và AB.AC=AD.AB  ta được AB vuông góc với CD.

Bước 3: Ngược lại đúng, vì quá trình chứng minh ở bước 1, bước 2 là quá trình biến đổi tương đương.

Hướng giải trên đúng hay sai? Nếu sai thì sai ở đâu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Hướng giải trên là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. (ảnh 1)

Ta có: AC =   a2

AC2 = 2a2 = SA2 + SC2

Do đó tam giác SAC vuông tại S.

Khi đó: NM.SC=12SA.SC=0NM,SC=90°

Do đó, MN vuông góc với SC hay NM,SC=90°  .

Lời giải

Đáp án đúng là: C

Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Gọi M, N, P, Q lần lượt là trung điểm các cạnh (ảnh 1)

Đặt AB = AD = AC = a.

Ta có: CD.AB=ADAC.AB

=AD.ABAC.AB=AB.AD.cos60°AB.AC.cos60°=a.a.12a.a.12=0

Do đó, AB vuông góc với CD.

Dễ thấy MN, PQ lần lượt là đường trung bình của các tam giác ABC và ABD.

Khi đó, MN // PQ // AB và MN = PQ = AB2 = a2nên tứ giác MNPQ là hình bình hành

Lại có:

MN // AB

NP // CD (do NP là đường trung bình của tam giác BCD)

AB CD

Khi đó, MN NP.

Do đó, MNPQ là hình chữ nhật.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP