Câu hỏi:

26/02/2024 239 Lưu

Cho khối lăng trụ đứng có cạnh bên bằng 5, đáy là hình vuông có cạnh bằng 4. Thể tích khối lăng trụ bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Vì khối lăng trụ đã cho là khối lăng trụ đứng có cạnh bên bằng 5 nên ta có chiều cao của khối lăng trụ h = 5.

Đáy là hình vuông cạnh bằng 4 nên ta có diện tích đáy S=42=16.

Thể tích khối lăng trụ với S = 16 là diện tích đáy và h = 5 là chiều cao khối lăng trụ là:

V = S.h = 16.5 = 80

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Số các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các chữ số 1;2;3;4;5;6 A63=120nΩ=120 .

Gọi biến cố A: “số được chọn là một số chia hết cho ”.

Giả sử số tự nhiên có ba chữ số khác nhau chia hết cho 5 có dạng abc¯ .

· Chữ số c = 5 có 1 cách chọn;

· Chữ số  b (bc) có 5 cách chọn;

· Chữ số a (ab;  ac) có 4 cách chọn.

Suy ra nA=1.5.4=20 .

Vậy xác suất cần tìm là PA=nAnΩ=20120=16 .

Lời giải

Đáp án đúng là: C

Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA = a căn 2. Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. (ảnh 2)

Gọi O là tâm hình vuông ABCD; M, N lần lượt là trung điểm của AB, CD

Ta có: AB//CD CDSCD  nên AB//(SCD).

Khi đó dAB,SC=dAB,SCD=dM,SCD.

Trong (SMN) kẻ  MISN, ISN(1).

Lại có:  CDMNCDSOCDSMNCDMI(2).

Từ (1) và (2) ta có MISCDdM,SCD=MI.

Xét tam giác SAC SA=SC=AC=a2  nên ΔSAC  đều.

Do đó SO=a232 .

Vì M, N lần lượt là trung điểm của AB, CD nên MN là đường trung bình của hình thang ABCD

Suy ra MN = AB = a.

Xét ΔSCD  cân tại C (do SC - SD) có SN là đường trung tuyến.

SNCD.

Áp dụng định lí Pythagore trong ΔSCN  có:

SSMN=12MISN=12SOMNMISN=SOMN

MI=SOMNSN=a62aa72=a427. .

Vậy dAB,CD=a427.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP