Câu hỏi:

26/02/2024 7,663

Có bao nhiêu số nguyên x  thỏa mãn

log3x2+1log3x+31322x10?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

log3x2+1log3x+31322x10log3x2+1log3x+310322x10log3x2+1log3x+310322x10

log3x2+1log3x+312x132log3x2+1log3x+312x132x2+1x+31x+31>02x125x2+1x+312x125x2+10  (luôn  đúng)

x2x300x>31x6x2x300x631<x5x=6

x  nên x30;29;28;...;6;5;6

Vậy có 27  số nguyên x  thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Số các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các chữ số 1;2;3;4;5;6 A63=120nΩ=120 .

Gọi biến cố A: “số được chọn là một số chia hết cho ”.

Giả sử số tự nhiên có ba chữ số khác nhau chia hết cho 5 có dạng abc¯ .

· Chữ số c = 5 có 1 cách chọn;

· Chữ số  b (bc) có 5 cách chọn;

· Chữ số a (ab;  ac) có 4 cách chọn.

Suy ra nA=1.5.4=20 .

Vậy xác suất cần tìm là PA=nAnΩ=20120=16 .

Lời giải

Đáp án đúng là: C

Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA = a căn 2. Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. (ảnh 2)

Gọi O là tâm hình vuông ABCD; M, N lần lượt là trung điểm của AB, CD

Ta có: AB//CD CDSCD  nên AB//(SCD).

Khi đó dAB,SC=dAB,SCD=dM,SCD.

Trong (SMN) kẻ  MISN, ISN(1).

Lại có:  CDMNCDSOCDSMNCDMI(2).

Từ (1) và (2) ta có MISCDdM,SCD=MI.

Xét tam giác SAC SA=SC=AC=a2  nên ΔSAC  đều.

Do đó SO=a232 .

Vì M, N lần lượt là trung điểm của AB, CD nên MN là đường trung bình của hình thang ABCD

Suy ra MN = AB = a.

Xét ΔSCD  cân tại C (do SC - SD) có SN là đường trung tuyến.

SNCD.

Áp dụng định lí Pythagore trong ΔSCN  có:

SSMN=12MISN=12SOMNMISN=SOMN

MI=SOMNSN=a62aa72=a427. .

Vậy dAB,CD=a427.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số f(x) có đạo hàm f'x=2x+1x+223x14,x . Số điểm cực trị của đồ thị hàm số f(x)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP