Câu hỏi:

26/02/2024 2,156

Cho hình lăng trụ đứng ABC/A’B’C’ có đáy là tam giác ABC là tam giác vuông cân tại A, BC = a. Gọi M là trung điểm của cạnh AA, biết hai mặt phẳng (MBC) (MB’C’) vuông góc với nhau. Thể tích khối lăng trụ ABC.A’B’C’ bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình lăng trụ đứng ABC/A’B’C’ có đáy là tam giác ABC là tam giác vuông cân tại A, BC = a. Gọi M là trung điểm của cạnh AA’ (ảnh 1)

Vì ABC là tam giác vuông cân tại A, a.

AB=AC=a22SΔABC=12a22.a22=14a2

ΔABC  ΔA'B'C'  cân tại A và A' nên ta dễ dàng có được ΔMA'C'=ΔMA'B'=ΔMAC=ΔMAB .

Suy ra MB=MC=MB'=MC' .

Gọi I, I' là trung điểm của BC và B'C'.

Suy raMIBC ; MI'B'C'  và MI = MI'.

Ta có: (MBC)(MB'C')=Mx  với Mx//BC//B'C' .

Trong (MBC) có: MIBCBC//MxMIMx .

Tương tự ta cũng có: MI'Mx .

Ta có: (MBC)(MB'C')=MxMIMx;MIMBCMI'Mx;MI'MB'C' .

Suy ra nên góc giữa hai mặt phẳng (MBC) và (MB'C') bằng IMI'^ .

Mà hai mặt phẳng (MBC) và (MB'C') vuông góc với nhau nên IMI'^=90° .

Ta có ΔIMI'  vuông cân tại  M MI'I^=45°MI'A'^=45° .

MA'I'^=90°A'MI'^=45°  nên ΔMA'I'  vuông cân tại A'.

ABC.A'B'C'  là hình lăng trụ có đáy là tam giấcBC là tam giác vuông cân tại A, BC = a nên AI=A'I'=BC2=a2

M'A=A'I'=a2AA'=2MA'=a

Thể tích khối lăng trụ ABC.A'B'C' là:

 VABC.A'B'C'=AA'.SΔABC=AA'12A'I'B'C'=a12a2a=a34.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi S là tập hợp các số tự nhiên có ba chữ số đôi một khác nhau được lập thành từ các chữ số 1;2;3;4;5;6. Cho ngẫu nhiên một số từ S, tính xác suất để số được chọn là một số chia hết cho 5.

Xem đáp án » 26/02/2024 16,657

Câu 2:

Cho hàm số f(x) có đạo hàm f'x=2x+1x+223x14,x . Số điểm cực trị của đồ thị hàm số f(x)

Xem đáp án » 24/02/2024 13,630

Câu 3:

Cho hàm số y=fx=ax3+bx2+cx+d  có đồ thị như hình vẽ dưới đây.

Cho hàm số y = f(x) = ã^3 + bx^2 + cx + d có đồ thị như hình vẽ dưới đây.   Hàm số y = f(x) đồng biến trên khoảng nào? (ảnh 1)

Hàm số y = f(x)  đồng biến trên khoảng nào?

Xem đáp án » 24/02/2024 13,258

Câu 4:

Có bao nhiêu giá trị nguyên thuộc đoạn [-2023;2023] của tham số thực m để hàm số y=e3x3m+2e2x+3mm+4ex  đồng biến trên khoảng ;ln2 ?

Xem đáp án » 26/02/2024 8,633

Câu 5:

Trong không gian Oxyz, cho đường thẳng d:x+11=y+21=z11  và mặt cầu S:x2+y2+z22x4y+6z13=0 . Lấy điểm M(a;b;c) với a<0 thuộc đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, Clà tiếp điểm) thỏa mãn AMB^=60°;BMC^=90°;CMA^=120° . Tổng a+b+c bằng

Xem đáp án » 26/02/2024 8,417

Câu 6:

Trên tập hợp số phức, xét phương trình z2mz+m+8=0  (m là tham số thực). Có bao nhiêu giá trị nguyên của tham số m để phương trình có hai nghiệm z1,z2  phân biệt thỏa mãn z1z12+mz2=m2m8z2 ?

Xem đáp án » 26/02/2024 7,306

Câu 7:

Tập nghiệm của bất phương trình 52x+3>125  là

Xem đáp án » 24/02/2024 5,308

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store