Câu hỏi:

27/02/2024 1,350 Lưu

Cho 2 số thực x,y thỏa mãn x2+y23  logx2+y2x4x23x+4y23y22 . Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x - y, khi đó biểu thức T = 2(M + m) có giá trị gần nhất với số nào sau đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: logx2+y2x4x23x+4y23y22logx2+y2x2+y24x32

1+logx2+y24x32x2+y24x+30x22+y21

Cho 2 số thực x,y thỏa mãn x^2 _ y^2 >=3 và logx^2+y^2[x(4x^2 - 3x + 4y^2)-3y^2]>=. Gọi M;m  (ảnh 1)

Giả sử M là giá trị lớn nhất của P.

Gọi Δ1:xyM=0  để tồn tại giá trị lớn nhất thì dI;ΔR .

2M21M2+2.

Vậy giá trị lớn nhất của P M=2+2 .

Giả sử m  là giá trị nhỏ nhất của P.

Gọi Δ2:xym=0 .

Dựa vào miền nghiệm của P ta thấy P đạt giá trị nhỏ nhất khi Δ2  đi qua điểm A32;32m=332 .

Vậy T=2M+m=22+2+3328,096 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có Oxy:z=0 , suy ra mặt phẳng cần tìm P:za=0  a0 .

Điểm A2;2;2Pa=2P:z2=0 .

Lời giải

Đáp án đúng là: D

Xét biến cố đối A¯ : “bắt được 3 con thỏ trắng trong 3 hoặc 4 lần”

· Trường hợp 1: Bắt được 3 con thỏ trắng trong 3 lần đầu:

Ta có nΩ=7.6.5  nA1¯=3! . Suy ra pA1¯=3!7.6.5

· Trường hợp 2: Bắt được 3 con thỏ trắng trong 4 lần đầu ( lần 4 bắt được con màu trắng; lần 1, 2 và 3 bắt được 2 con thỏ trắng và 1 con thỏ nâu)

Ta có nΩ=7.6.5.4  nA2¯=C41.C32.3! . Suy ra pA2¯=C41.C32.3!7.6.5.4

Suy ra: pA¯=pA1¯+pA2¯=435pA=1435=3135 .

Vậy xác suất để cần phải bắt đến ít nhất 5 con thỏ là pA=3135 .

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP