Câu hỏi:

28/02/2024 234 Lưu

Cho hình chóp đều S.ABC ASB^=30°,SA=1 . Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’ nhỏ nhất. Tỉ số VS.AB'C'VS.ABC  gần giá trị nào nhất trong các giá trị sau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

 Cho hình chóp đều S.ABC có góc ASB = 30 độ, SA = 1. Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’  (ảnh 1) Cho hình chóp đều S.ABC có góc ASB = 30 độ, SA = 1. Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’  (ảnh 2)

 

Trải hình, ta có AA',SA=SB=1 ,ASB^=30°

 

ΔSAA'vuông cân tại S SAA'^=45°.

Ta có chu vi ΔAB'C'  2p=AB'+AC'+B'C'AA' .

Do đó chu vi ΔAB'C'  nhỏ nhất B',C'AA'.

Gọi I là trung điểm của BC và H là giao điểm của SI và B'C'.

Ta

SH=SA.sinSAH^=1.sin45°=22;SI=SB.sinSBI^=1.sin75°=241+3 .

B'C'//BC  nên VS.AB'C'VS.ABC=SB'SB.SC'SC=SHSI.SHSI=SHSI2=423 .

Vậy tỉ số VS.AB'C'VS.ABC  gần giá trị 0,55 nhất trong các giá trị đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có Oxy:z=0 , suy ra mặt phẳng cần tìm P:za=0  a0 .

Điểm A2;2;2Pa=2P:z2=0 .

Lời giải

Đáp án đúng là: D

Xét biến cố đối A¯ : “bắt được 3 con thỏ trắng trong 3 hoặc 4 lần”

· Trường hợp 1: Bắt được 3 con thỏ trắng trong 3 lần đầu:

Ta có nΩ=7.6.5  nA1¯=3! . Suy ra pA1¯=3!7.6.5

· Trường hợp 2: Bắt được 3 con thỏ trắng trong 4 lần đầu ( lần 4 bắt được con màu trắng; lần 1, 2 và 3 bắt được 2 con thỏ trắng và 1 con thỏ nâu)

Ta có nΩ=7.6.5.4  nA2¯=C41.C32.3! . Suy ra pA2¯=C41.C32.3!7.6.5.4

Suy ra: pA¯=pA1¯+pA2¯=435pA=1435=3135 .

Vậy xác suất để cần phải bắt đến ít nhất 5 con thỏ là pA=3135 .

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP