Câu hỏi:

28/02/2024 227

Cho hàm số y=sin2xm+1sinx+2m+2sinx2  (với m là tham số thực). Giá trị lớn nhất của hàm số đạt giá trị nhỏ nhất khi m bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: y=sin2xm+1sinx+2m+22sinx  vì sinx<2,x

Đặt t=sinx,  t1;1 , đặt ft=t2m+1t+2m+22t .

Ta có: f't=t2+4t2t2, f't=0t=0,t=4  (loại)

Khi đó: f1=m+43f0=m+1=mint1;1ft=af1=m+2=maxt1;1ft=A

Nên maxt1;1ft=A+a+Aa2=2m+3+1212

Dấu “=” xảy ra 2m+3=0m=32 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có Oxy:z=0 , suy ra mặt phẳng cần tìm P:za=0  a0 .

Điểm A2;2;2Pa=2P:z2=0 .

Câu 2

Lời giải

Đáp án đúng là: B

Gọi H là trung điểm của AB thì IH vuông góc với AB IH=22+32=13 .

Suy ra bán kính mặt cầu là: R=IA=3+13=4 .

Vậy phương trình mặt cầu là x12+y+22+z32=16 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP