Câu hỏi:
28/02/2024 1,834
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = BC = a, , SA ^ (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) là
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = BC = a, , SA ^ (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) là
Quảng cáo
Trả lời:
Đáp án đúng là: B

Vì SA ^ (ABC) nên SA ^ BC mà AB ^ BC (do tam giác ABC vuông cân tại B) nên BC ^ (SAB) ⇒ BC ^ SB.
Do đó góc giữa hai mặt phẳng (SBC) và (ABC) là .
Xét ∆SAB vuông tại A, .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B

Gọi M là trung điểm của BC.
Vì ∆SBC đều nên SM ^ BC, .
Ta có (SBC) ^ (ABC) và SM ^ BC ⇒ SM ^ (ABC) ⇒ SM ^ AC.
Gọi N là trung điểm của AC ⇒ MN // AB mà AB ^ AC suy ra MN ^ AC.
Ta có SM ^ AC và MN ^ AC ⇒ AC ^ (SMN) ⇒ AC ^ SN .
Do đó góc giữa hai mặt phẳng (SAC) và (ABC) bằng .
Xét ∆ABC vuông tại A, có AB = BC∙cos60° = a.
Vì MN là đường trung bình của ∆ABC nên .
Xét ∆SMN vuông tại M, .
Lời giải
Đáp án đúng là: D

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC và BD.
Vì ABCD là hình vuông nên AO ^ BD.
Mà SA ^ (ABCD) nên SA ^ BD.
Lại có AO ^ BD nên BD ^ (SAC) ⇒ BD ^ SO.
Do đó góc giữa (SBD) và (ABCD) bằng .
Xét ∆ABC vuông tại B, có .
Mà O là trung điểm AC nên .
Xét ∆SAO vuông tại A, .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.