Câu hỏi:

28/02/2024 1,753

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, AB là đáy lớn và tam giác ABC là cân tại C, AC = a. Các mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy, cạnh bên SC=a3  và tạo với mặt phẳng (SAB) một góc bằng 30°. Góc giữa hai mặt phẳng (SAB) và (SAC) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, AB là đáy lớn và tam giác ABC là cân tại C, AC = a. (ảnh 1)

Vì SABABCDSACABCDSABSAC=SASAABCD  .

Kẻ CK ^ AB tại K.

Vì SA ^ (ABCD) nên SA ^ CK mà CK ^ AB nên CK ^ (SAB).

Do đó hình chiếu của SC lên mặt phẳng (SAB) là SK.

Do đó .

Xét ∆SCK vuông tại K, có CK = SC.sin30° = a32 .

Vì tam giác ABC cân tại C mà CK=a32  nên tam giác ABC đều.

Vì SA ^ (ABCD) nên SA ^ AC, SA ^ AB.

Do đó góc giữa hai mặt phẳng (SAB) và (SAC) bằng BAC^=60° .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC=60 độ  , tam giác SBC là tam giác đều có cạnh 2a (ảnh 1)

Gọi M là trung điểm của BC.

Vì ∆SBC đều nên SM ^ BC, SM=2a32=a3 .

Ta có (SBC) ^ (ABC) và SM ^ BC SM ^ (ABC) SM ^ AC.

Gọi N là trung điểm của AC MN // AB mà AB ^ AC suy ra MN ^ AC.

Ta có SM ^ AC và MN ^ AC AC ^ (SMN) AC ^ SN .

Do đó góc giữa hai mặt phẳng (SAC) và (ABC) bằng SNM^ .

Xét ∆ABC vuông tại A, có AB = BC∙cos60° = a.

Vì MN là đường trung bình của ∆ABC nên MN=AB2=a2 .

Xét ∆SMN vuông tại M,  tanSNM^=SMMN=23 .

Lời giải

Đáp án đúng là: D

Cho hình chóp S.ABCD với đáy ABCD là hình vuông có cạnh 2a, (ảnh 1)

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC và BD.

Vì ABCD là hình vuông nên AO ^ BD.

Mà SA ^ (ABCD) nên SA ^ BD.

Lại có AO ^ BD nên BD ^ (SAC) BD ^ SO.

Do đó góc giữa (SBD) và (ABCD) bằng SOA^ .

Xét ∆ABC vuông tại B, có AC=AB2+BC2=2a2 .

Mà O là trung điểm AC nên AO=AC2=a2  .

Xét ∆SAO vuông tại A, tanSOA^=SAAO=a6a2=3SOA^=60°  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP