Câu hỏi:

28/02/2024 1,152

Cho hình chóp A.BCD có cạnh AC ^ (BCD) và BCD là tam giác đều cạnh bằng a. Biết AC=a2  M là trung điểm của BD. Khoảng cách từ C đến đường thẳng AM bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình chóp A.BCD có cạnh AC ^ (BCD) và BCD là tam giác đều cạnh bằng a. (ảnh 1)

Kẻ CH ^ AM tại H. Khi đó d(C, AM) = CH.

Do DBCD đều cạnh a nên MC là đường cao và MC=a32  .

Vì AC ^ (BCD) nên AC ^ CM.

Xét DACM vuông tại C, ta có 1CH2=1AC2+1CM2=12a2+43a2=116a2CH=a6611 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), ABC là tam giác đều cạnh a, SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng (ảnh 1)

Gọi M là trung điểm BC, H là hình chiếu vuông góc của A trên SM.

DABC đều nên AM ^ BC và AM=a32 .

Vì SA ^ (ABC) nên SA ^ BC mà AM ^ BC nên BC ^ (SAM) BC ^ AH.

Lại có AH ^ SM do đó AH ^ (SBC) d(A, (SBC)) = AH.

Xét DSAM vuông tại A, có 1AH2=1AS2+1AM2=14a2+43a2=1912a2AH=2a5719.

Lời giải

Đáp án đúng là: B

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một và SA = 3a, SB = a, SC = 2a.  (ảnh 1)

Dựng AH ^ BC tại H d(A, BC) = AH.

Vì SA ^ SB và SA ^ SC nên SA ^ (SBC) SA ^ BC.

Lại có AH ^ BC nên BC ^ (SAH) BC ^ SH.

Xét DSBC vuông tại S, có 1SH2=1SB2+1SC2=1a2+14a2=54a2SH=2a55  .

Vì SA ^ (SBC) nên SA ^ SH.

Xét DASH vuông tại S, có AH=SA2+SH2=9a2+4a25=7a55  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP