Câu hỏi:

28/02/2024 3,615 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc với đáy ABCD. Gọi K, H theo thứ tự là hình chiếu vuông góc của AO lên SD. Chọn khẳng định đúng trong các khẳng định sau?

A. Đoạn vuông góc chung của AC và SD là AK;
B. Đoạn vuông góc chung của AC và SD là CD;
C. Đoạn vuông góc chung của AC và SD là OH;         
D. Các khẳng định trên đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc với đáy ABCD. (ảnh 1)

Vì SA ^ (ABCD) nên SA ^ AB mà AB ^ AD Þ AB ^ (SAD) Þ AB ^ AK.

Nếu AK ^ AC mà AB ^ AK Þ AK ^ (ABC) Þ AK º SA vì SA ^ (ABC).

Þ SA ^ SD Þ DSAD có hai góc vuông (vô lý). Suy ra đáp án A sai.

Vì ABCD là hình vuông AC và CD không vuông góc với nhau. Do đó đáp án B sai.

Nếu AC ^ OH mà AC ^ BD nên AC ^ (SBD) Þ AC ^ SO

Þ DSOA có hai góc vuông (vô lý).

Do đó đáp án C sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với mặt đáy và SA = a.  (ảnh 1)

Gọi H là trung điểm của AD. Khi đó AH = HD = a.

Vì BC // HD và BC = HD = a nên BCDH là hình bình hành.

Do đó CD // BH Þ CD // (SBH).

Do đó d(SB, CD) = d(CD, (SBH)) = d(D, (SBH)) = d(A, (SBH)).

Gọi h = d(A, (SBH)).

Vì SA, AH, AB đôi một vuông góc với nhau nên ta có :

1h2=1SA2+1AH2+1AB2=1a2+1a2+1a2=3a2h=a33.

Lời giải

Đáp án đúng là: C

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách giữa BB' và AC bằng: (ảnh 1)

Gọi O là tâm của hình vuông ABCD nên O là trung điểm của AC, BD.

Vì ABCD là hình vuông nên AC ^ BD tại O.

Do đó BO ^ AC (1).

Mà BB' ^ (ABCD) Þ BB' ^ BO (2).

Từ (1) và (2), ta có BO là đoạn vuông góc chung của AC và BB'.

Do đó d(AC, BB') = BO.

BO=12BD=12AB2+AD2=a22 .

Do đó d(AC, BB') = a22 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP