Câu hỏi:

29/02/2024 926 Lưu

Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1;2;3) trên mặt phẳng (Oxz) là

A. P0;2;3

B. M1;0;3

C. N0;2;0

D. Q1;2;0

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Mặt phẳng (Oxz) đi qua điểm O(0;0;0), có vectơ pháp tuyến j=0;1;0

Phương trình (Oxz) là y = 0

Đường thẳng Δ  qua  và vuông góc với (Oxz) có phương trình x=1y=2+tz=3 .

Gọi A' là hình chiếu vuông góc của A lên (Oxz) nên A'=ΔOxz  suy ra A'(1;0;3).

Vậy A' trùng với điểm M đề bài cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có Oxy:z=0 , suy ra mặt phẳng cần tìm P:za=0  a0 .

Điểm A2;2;2Pa=2P:z2=0 .

Lời giải

Đáp án đúng là: C

Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A’B’C’có A' (căn 3;-1;1), hai đỉnh B, C thuộc trục Oz và  (ảnh 1)

Gọi I là trung điểm của BC.

Do tam giác ABC đều nên AIBCA'IBCI  là hình chiếu của A' trên BC. Vì B,COz  nên I là hình chiếu của A' trên OzI0;0;1 .

Ta có A'I=3;1;0A'I=2 .

Trong tam giác vuông AA'I có: AI=A'I2AA'2=41=3 .

Vì tam giác ABC đều nên BC=23AI=23.3=2CI=1 .

Gọi C0;0;cOz .

Do CI=1;I0;0;1;  COC0;0;2A'C3;1;1 .

u=a;b;2  là một vectơ chỉ phương của đường thẳng A'C nên A'C  u  cùng phương.

Suy ra a3=b1=21a=23b=2a2+b2=232+22=16 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. x12+y+22+z32=25

B. x12+y+22+z32=16

C. x12+y+22+z32=20

D. x12+y+22+z32=9

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP