Câu hỏi:
13/07/2024 5,295Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB.
a. Biết AE = 3,6 cm; BE = 6,4 cm. Tính AH, EH và góc (Số đo góc làm tròn đến độ)
b. Kẻ HF vuông góc với AC tại F. Chứng minh AB.AE = AC.AF.
c. Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O.
Chứng minh rằng .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Trong tam giác ABH vuông tại H, ta có:
EH2 = AE.BE = 3,6.6,4 = 23,04 ⇒ EH = 4,8 (cm)
AH2 = AE.AB = 3,6(3,6 + 6,4) = 36 ⇒ AH = 6 (cm)
b) Áp dụng hệ thức lượng trong tam giác ABH vuông tại H:
AH2 = AE.AB
Áp dụng hệ thức lượng trong tam giác ACH vuông tại H:
AH2 = AF.AC
Suy ra: AB.AE = AC.AF (= AH2)
c) Xét tam giác AEF và tam giác ABC có:
Chung
(từ AB.AE = AC.AF)
⇒ ∆AEF ∽ ∆ACB (c.g.c)
⇒
Gọi I là giao điểm AD và EF
Có: tam giác IAF vuông tại I nên
Tam giác ABH vuông tại H nên
Mà: hay nên
Xét tam giác AOE và ADC có:
(vì )
Suy ra: ∆AOE ∽ ∆ADC (g.g)
⇒
(vì tam giác ABH vuông tại H nên ).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:
a) DB = CF.
b) ∆BDC = ∆FCD.
c) DE // BC và .
Câu 2:
Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.
a) Tìm giao tuyến của (OMN) và (BCD).
b) Tìm giao điểm của BC với (OMN).
c) Tìm giao điểm của BD với (OMN).
Câu 3:
Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài bằng?
Câu 4:
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?
b) Gọi M là trung điểm của AC. Tính góc .
Câu 5:
Cho tam giác ABC, đường trung tuyến AD. Gọi M là một điểm trên cạnh AC sao cho . Gọi O là giao điểm của BM và AD. Chứng minh rằng:
a, O là trung điểm của AD.
b, .
Câu 6:
Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).
Câu 7:
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:
a) Chứng minh: AB2 + CH2 = AC2 + BH2.
b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.
c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận