Câu hỏi:
13/07/2024 4,728Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB.
a. Biết AE = 3,6 cm; BE = 6,4 cm. Tính AH, EH và góc (Số đo góc làm tròn đến độ)
b. Kẻ HF vuông góc với AC tại F. Chứng minh AB.AE = AC.AF.
c. Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O.
Chứng minh rằng .
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
a) Trong tam giác ABH vuông tại H, ta có:
EH2 = AE.BE = 3,6.6,4 = 23,04 ⇒ EH = 4,8 (cm)
AH2 = AE.AB = 3,6(3,6 + 6,4) = 36 ⇒ AH = 6 (cm)
b) Áp dụng hệ thức lượng trong tam giác ABH vuông tại H:
AH2 = AE.AB
Áp dụng hệ thức lượng trong tam giác ACH vuông tại H:
AH2 = AF.AC
Suy ra: AB.AE = AC.AF (= AH2)
c) Xét tam giác AEF và tam giác ABC có:
Chung
(từ AB.AE = AC.AF)
⇒ ∆AEF ∽ ∆ACB (c.g.c)
⇒
Gọi I là giao điểm AD và EF
Có: tam giác IAF vuông tại I nên
Tam giác ABH vuông tại H nên
Mà: hay nên
Xét tam giác AOE và ADC có:
(vì )
Suy ra: ∆AOE ∽ ∆ADC (g.g)
⇒
(vì tam giác ABH vuông tại H nên ).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.
a) Tìm giao tuyến của (OMN) và (BCD).
b) Tìm giao điểm của BC với (OMN).
c) Tìm giao điểm của BD với (OMN).
Câu 2:
Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài bằng?
Câu 3:
Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:
a) DB = CF.
b) ∆BDC = ∆FCD.
c) DE // BC và .
Câu 4:
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?
b) Gọi M là trung điểm của AC. Tính góc .
Câu 5:
Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).
Câu 6:
Cho tam giác ABC có BA = 8, AC = 9. BC = 10. Một điểm M nằm trên BC sao cho BM = 7. Tính AM.
Câu 7:
Cho tam giác ABC vuông tại A (AB < AC), có trung tuyến AM. Kẻ MN vuông góc với AB, và MP vuông góc với AC (N thuộc AB; P thuộc AC).
a) Tứ giác ANMP là hình gì? vì sao?
b) Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
c) Gọi E là trung điểm của BM, F là giao điểm của AM và PN. Chứng minh tứ giác ABEF là hình thang cân.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!