Câu hỏi:

13/07/2024 211

Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA. (ảnh 1)

• Xét tam giác HAB có BD AH, AE BH, HF AB và ba đường cao BD, AE, HF cắt nhau tại C.

Do đó C là trực tâm tam giác HAB.

• Xét tam giác HBC có HD BC, BF HC, CE BH và ba đường cao HD, BF, CEcắt nhau tại A.

Do đó A là trực tâm tam giác HBC.

• Xét tam giác HCA có HE AC, AF HC, CD AH và ba đường cao HE, AF, CD cắt nhau tại B.

Do đó B là trực tâm tam giác HCA.

Vậy trực tâm của các tam giác HAB, HBC, HCA tương ứng là C, A, B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:

a) DB = CF.

b) ∆BDC = ∆FCD.

c) DE // BC và DE=12BC.

Xem đáp án » 13/07/2024 19,567

Câu 2:

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.

a) Tìm giao tuyến của (OMN) và (BCD).

b) Tìm giao điểm của BC với (OMN).

c) Tìm giao điểm của BD với (OMN).

Xem đáp án » 12/07/2024 15,926

Câu 3:

Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài ABGC bằng?

Xem đáp án » 13/07/2024 15,557

Câu 4:

Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?

b) Gọi M là trung điểm của AC. Tính góc BMC^.

Xem đáp án » 13/07/2024 11,826

Câu 5:

Cho tam giác ABC, đường trung tuyến AD. Gọi M là một điểm trên cạnh AC sao cho AM=12MC. Gọi O là giao điểm của BM và AD. Chứng minh rằng:

a, O là trung điểm của AD.

b, OM=14BM.

Xem đáp án » 13/07/2024 8,614

Câu 6:

Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).

Xem đáp án » 12/07/2024 8,385

Câu 7:

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:

a) Chứng minh: AB2 + CH2 = AC2 + BH2.

b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.

c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.

Xem đáp án » 13/07/2024 7,791