Câu hỏi:
13/07/2024 1,619Cho ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD.
a) Chứng minh DC vuông góc với BC.
b) Gọi I là giao điểm EF và BC. Chứng minh .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có
BE = DF (cạnh đối hình bình hành)
BE = CF (gt)
⇒ CF=DF ⇒ tam giác CDF cân tại F
Ta có DF//BE ⇒ DF//AB mà AB ⊥ AC ⇒ DF ⊥ AC
⇒ tam giác CDF vuông cân tại F ⇒
Tam giác ABC vuông cân tại A ⇒
⇒
⇒ DC ⊥ BC (đpcm)
b/ Từ E dựng đường thẳng vuông góc với AB cắt BC tại K
Xét tam giác vuông BEK có:
⇒
⇒ tam giác BEK cân tại E ⇒ BE=KE
Mà BE = CF (gt)
⇒ KE = CF (1)
Ta có: KE ⊥ AB
AC⊥AB
⇒ CF ⊥ AB
⇒ KE // CF (2)
Từ (1) và (2) ⇒ CEKF là hình bình hành
⇒ IE = IF (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tam giác vuông AEF có: IE = IF (cmt)
⇒
Mà EF = DB nên .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.
a) Tìm giao tuyến của (OMN) và (BCD).
b) Tìm giao điểm của BC với (OMN).
c) Tìm giao điểm của BD với (OMN).
Câu 2:
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?
b) Gọi M là trung điểm của AC. Tính góc .
Câu 3:
Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).
Câu 4:
Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài bằng?
Câu 5:
Cho tam giác ABC có BA = 8, AC = 9. BC = 10. Một điểm M nằm trên BC sao cho BM = 7. Tính AM.
Câu 6:
Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:
a) DB = CF.
b) ∆BDC = ∆FCD.
c) DE // BC và .
Câu 7:
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 20cm. Tính AC, BH, CH, AH?
về câu hỏi!