Câu hỏi:
13/07/2024 1,907
Cho ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD.
a) Chứng minh DC vuông góc với BC.
b) Gọi I là giao điểm EF và BC. Chứng minh .
Cho ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD.
a) Chứng minh DC vuông góc với BC.
b) Gọi I là giao điểm EF và BC. Chứng minh .
Quảng cáo
Trả lời:

a) Ta có
BE = DF (cạnh đối hình bình hành)
BE = CF (gt)
⇒ CF=DF ⇒ tam giác CDF cân tại F
Ta có DF//BE ⇒ DF//AB mà AB ⊥ AC ⇒ DF ⊥ AC
⇒ tam giác CDF vuông cân tại F ⇒
Tam giác ABC vuông cân tại A ⇒
⇒
⇒ DC ⊥ BC (đpcm)
b/ Từ E dựng đường thẳng vuông góc với AB cắt BC tại K
Xét tam giác vuông BEK có:
⇒
⇒ tam giác BEK cân tại E ⇒ BE=KE
Mà BE = CF (gt)
⇒ KE = CF (1)
Ta có: KE ⊥ AB
AC⊥AB
⇒ CF ⊥ AB
⇒ KE // CF (2)
Từ (1) và (2) ⇒ CEKF là hình bình hành
⇒ IE = IF (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tam giác vuông AEF có: IE = IF (cmt)
⇒
Mà EF = DB nên .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác AED và CEF có:
EA = EC
(đối đỉnh)
ED = EF
⇒ ∆AED = ∆CEF (c.g.c)
⇒ DA = CF
Mà DA = DB nên DB = CF
b) ∆AED = ∆CEF nên:
Suy ra: AB // CF
⇒ (so le trong)
Xét tam giác BDC và FCD có:
DC chung
BD = CF
⇒ ∆BDC = ∆FCD (c.g.c)
c) ∆BDC = ∆FCD nên
Suy ra: DE // BC (2 góc so le trong bằng nhau)
Lại có BC = DF = 2DE
Nên: .
Lời giải

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.
Khi đó OI = (OMN) ∩ (BCD)
b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD
K, H ∈ OI nên K, H ∈ (OMN)
Vậy H = BC ∩ (OMN)
c) K, H ∈ OI nên K, H ∈ (OMN)
Nên K = BD ∩ (OMN).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.