Câu hỏi:
13/07/2024 1,764Cho ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD.
a) Chứng minh DC vuông góc với BC.
b) Gọi I là giao điểm EF và BC. Chứng minh .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Ta có
BE = DF (cạnh đối hình bình hành)
BE = CF (gt)
⇒ CF=DF ⇒ tam giác CDF cân tại F
Ta có DF//BE ⇒ DF//AB mà AB ⊥ AC ⇒ DF ⊥ AC
⇒ tam giác CDF vuông cân tại F ⇒
Tam giác ABC vuông cân tại A ⇒
⇒
⇒ DC ⊥ BC (đpcm)
b/ Từ E dựng đường thẳng vuông góc với AB cắt BC tại K
Xét tam giác vuông BEK có:
⇒
⇒ tam giác BEK cân tại E ⇒ BE=KE
Mà BE = CF (gt)
⇒ KE = CF (1)
Ta có: KE ⊥ AB
AC⊥AB
⇒ CF ⊥ AB
⇒ KE // CF (2)
Từ (1) và (2) ⇒ CEKF là hình bình hành
⇒ IE = IF (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tam giác vuông AEF có: IE = IF (cmt)
⇒
Mà EF = DB nên .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.
a) Tìm giao tuyến của (OMN) và (BCD).
b) Tìm giao điểm của BC với (OMN).
c) Tìm giao điểm của BD với (OMN).
Câu 2:
Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài bằng?
Câu 3:
Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:
a) DB = CF.
b) ∆BDC = ∆FCD.
c) DE // BC và .
Câu 4:
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?
b) Gọi M là trung điểm của AC. Tính góc .
Câu 5:
Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).
Câu 6:
Cho tam giác ABC có BA = 8, AC = 9. BC = 10. Một điểm M nằm trên BC sao cho BM = 7. Tính AM.
Câu 7:
Cho tam giác ABC vuông tại A (AB < AC), có trung tuyến AM. Kẻ MN vuông góc với AB, và MP vuông góc với AC (N thuộc AB; P thuộc AC).
a) Tứ giác ANMP là hình gì? vì sao?
b) Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
c) Gọi E là trung điểm của BM, F là giao điểm của AM và PN. Chứng minh tứ giác ABEF là hình thang cân.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!