Câu hỏi:

13/07/2024 8,375

Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MDBC (D BC).

a) Chứng minh BA = BD.

b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh ΔABC = ΔDBE

c) Kẻ DH MC (H MC) và AK ME (K  ME). Gọi N là giao điểm của hai tia DH và AK. Chứng minh MN là tia phân giác góc HMK^.

d) Chứng minh ba điểm B, M, N thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD⊥BC (D∈ BC) (ảnh 1)

a) Xét 2 tam giác vuông ΔABM và ΔDBM có:

BM chung

ABM^=DBM^(do BM là phân giác)

ΔABM = ΔDBM (cạnh huyền- góc nhọn)

BA = BD (hai cạnh tương ứng)

b) Xét 2 tam giác vuông ΔABC và ΔDBE có:

BA = BD (chứng minh ở câu a)

B^ chung

ΔABC = ΔDBE (cạnh góc vuông- góc nhọn)

c) Xét 2 tam giác vuông ΔAMK và ΔDMH có:

AM = DM (hai cạnh tương ứng do ΔABM = ΔDBM)

AMK^=DMH^ (đối đỉnh)

ΔAMK = ΔDMH (cạnh huyền-góc nhọn)

MK = MH (hai cạnh tương ứng)

Xét 2 tam giác vuông ΔMNK và ΔMNH có:

MK = MH (cmt)

MKN^=MHN^=90°

MN chung

ΔMNK = ΔMNH (c.g.c)

MNK^=MNH^ (hai góc tương ứng)

NM là tia phân giác của HMK^(đpcm) (1)

d) Do AK = DH (hai cạnh tương ứng ΔAMK = ΔDMH)

KN = HN (hai cạnh tương ứng ΔMNK = ΔMNH)

AN = AK + KN = DH + HN = DN

Xét ΔABN và ΔDBN có:

AB = DB (cmt)

BN chung

AN = DN

ΔABN = ΔDBN (c.c.c)

ANB^=DNB^ (hai góc tương ứng)

NB là tia phân giác AND^ (2)

Từ (1) và (2) suy ra B, M, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF (ảnh 1)

a) Xét tam giác AED và CEF có:

EA = EC

AED^=CEF^(đối đỉnh)

ED = EF

∆AED = ∆CEF (c.g.c)

DA = CF

Mà DA = DB nên DB = CF

b) ∆AED = ∆CEF nên: A^=ECF^

Suy ra: AB // CF

BDC^=DCF^ (so le trong)

Xét tam giác BDC và FCD có:

DC chung

BDC^=DCF^

BD = CF

∆BDC = ∆FCD (c.g.c)

c) ∆BDC = ∆FCD nên DCB^=CDF^

Suy ra: DE // BC (2 góc so le trong bằng nhau)

Lại có BC = DF = 2DE

Nên: DE=12BC.

Lời giải

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. (ảnh 1)

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.

Khi đó OI = (OMN) ∩ (BCD)

b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD

K, H OI nên K, H (OMN)

Vậy H = BC ∩ (OMN)

c) K, H OI nên K, H (OMN)

Nên K = BD ∩ (OMN).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP