Câu hỏi:

13/07/2024 5,295

Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MDBC (D BC).

a) Chứng minh BA = BD.

b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh ΔABC = ΔDBE

c) Kẻ DH MC (H MC) và AK ME (K  ME). Gọi N là giao điểm của hai tia DH và AK. Chứng minh MN là tia phân giác góc HMK^.

d) Chứng minh ba điểm B, M, N thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD⊥BC (D∈ BC) (ảnh 1)

a) Xét 2 tam giác vuông ΔABM và ΔDBM có:

BM chung

ABM^=DBM^(do BM là phân giác)

ΔABM = ΔDBM (cạnh huyền- góc nhọn)

BA = BD (hai cạnh tương ứng)

b) Xét 2 tam giác vuông ΔABC và ΔDBE có:

BA = BD (chứng minh ở câu a)

B^ chung

ΔABC = ΔDBE (cạnh góc vuông- góc nhọn)

c) Xét 2 tam giác vuông ΔAMK và ΔDMH có:

AM = DM (hai cạnh tương ứng do ΔABM = ΔDBM)

AMK^=DMH^ (đối đỉnh)

ΔAMK = ΔDMH (cạnh huyền-góc nhọn)

MK = MH (hai cạnh tương ứng)

Xét 2 tam giác vuông ΔMNK và ΔMNH có:

MK = MH (cmt)

MKN^=MHN^=90°

MN chung

ΔMNK = ΔMNH (c.g.c)

MNK^=MNH^ (hai góc tương ứng)

NM là tia phân giác của HMK^(đpcm) (1)

d) Do AK = DH (hai cạnh tương ứng ΔAMK = ΔDMH)

KN = HN (hai cạnh tương ứng ΔMNK = ΔMNH)

AN = AK + KN = DH + HN = DN

Xét ΔABN và ΔDBN có:

AB = DB (cmt)

BN chung

AN = DN

ΔABN = ΔDBN (c.c.c)

ANB^=DNB^ (hai góc tương ứng)

NB là tia phân giác AND^ (2)

Từ (1) và (2) suy ra B, M, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.

a) Tìm giao tuyến của (OMN) và (BCD).

b) Tìm giao điểm của BC với (OMN).

c) Tìm giao điểm của BD với (OMN).

Xem đáp án » 12/07/2024 15,797

Câu 2:

Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài ABGC bằng?

Xem đáp án » 13/07/2024 15,386

Câu 3:

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:

a) DB = CF.

b) ∆BDC = ∆FCD.

c) DE // BC và DE=12BC.

Xem đáp án » 13/07/2024 14,613

Câu 4:

Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?

b) Gọi M là trung điểm của AC. Tính góc BMC^.

Xem đáp án » 13/07/2024 10,010

Câu 5:

Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).

Xem đáp án » 12/07/2024 8,269

Câu 6:

Cho tam giác ABC có BA = 8, AC = 9. BC = 10. Một điểm M nằm trên BC sao cho BM = 7. Tính AM.

Xem đáp án » 03/03/2024 6,659

Câu 7:

Cho tam giác ABC vuông tại A (AB < AC), có trung tuyến AM. Kẻ MN vuông góc với AB, và MP vuông góc với AC (N thuộc AB; P thuộc AC).

a) Tứ giác ANMP là hình gì? vì sao?

b) Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.

c) Gọi E là trung điểm của BM, F là giao điểm của AM và PN. Chứng minh tứ giác ABEF là hình thang cân.

Xem đáp án » 13/07/2024 6,108

Bình luận


Bình luận