Câu hỏi:

13/07/2024 2,755 Lưu

Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của HAB^.

a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.

b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.

c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC.

Chứng minh SAEF = SABC.(1 - cos2B).sin2C.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của (ảnh 1)

a) Ta có tam giác ABC vuông tại A, AH BC

Nên: AH2 = BH.CH = 18.8 = 144

AH = 12cm.

AC = AH2+HC2=413

b) Vì AD là phân giác BAH^   BAD^=DAH^

HAC^=90°HAB^=ABH^=ABD^

 CDA^=DAB^+DBA^=DAH^+CAH^=CAD^

Suy ra: tam giác CAD cân tại C CA = CD

Vì AD là phân giác BAH^   DHDB=AHAB=sinB=ACBC

HD.BC = BD.AC = DB.CD

c) Ta có: HE AB, HF AC, AB AC

Nên AEHF là hình chữ nhật

AH = EF

 AEF^=EAH^=BAH^=90°B^=ACB^

Mà EAF^=BAC^

∆AFE ∆ABC (g.g)

 SAFESABC=EFBC2=AH2BC2
Ta có: 1 – cos2B = sin2B

(1 – cos2B)sin2C = sin2Bsin2C = (sinBsinC)2

ACBC.ABBC2=AB.ACBC22=AH.BCBC22=AHBC2

 SAFESABC=1cos2Bsin2C

SAEF = SABC.(1 - cos2B).sin2C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF (ảnh 1)

a) Xét tam giác AED và CEF có:

EA = EC

AED^=CEF^(đối đỉnh)

ED = EF

∆AED = ∆CEF (c.g.c)

DA = CF

Mà DA = DB nên DB = CF

b) ∆AED = ∆CEF nên: A^=ECF^

Suy ra: AB // CF

BDC^=DCF^ (so le trong)

Xét tam giác BDC và FCD có:

DC chung

BDC^=DCF^

BD = CF

∆BDC = ∆FCD (c.g.c)

c) ∆BDC = ∆FCD nên DCB^=CDF^

Suy ra: DE // BC (2 góc so le trong bằng nhau)

Lại có BC = DF = 2DE

Nên: DE=12BC.

Lời giải

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. (ảnh 1)

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.

Khi đó OI = (OMN) ∩ (BCD)

b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD

K, H OI nên K, H (OMN)

Vậy H = BC ∩ (OMN)

c) K, H OI nên K, H (OMN)

Nên K = BD ∩ (OMN).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP