Câu hỏi:

13/07/2024 717

Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các đường phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các đường phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN. (ảnh 1)

Vì BM là đường phân giác của góc B nên ta có:

MAMC=ABBCMAMA+MC=ABAB+BC

Suy ra: MA=AB.MA+MCAB+BC=6.86+10=4816=3cm

Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: BM BN

Suy ra tam giác BMN vuông tại B

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: 

AB2 = AM.AN

Suy ra: AN =AB2AM=623=12cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:

a) DB = CF.

b) ∆BDC = ∆FCD.

c) DE // BC và DE=12BC.

Xem đáp án » 13/07/2024 20,986

Câu 2:

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.

a) Tìm giao tuyến của (OMN) và (BCD).

b) Tìm giao điểm của BC với (OMN).

c) Tìm giao điểm của BD với (OMN).

Xem đáp án » 12/07/2024 16,399

Câu 3:

Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài ABGC bằng?

Xem đáp án » 13/07/2024 15,723

Câu 4:

Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?

b) Gọi M là trung điểm của AC. Tính góc BMC^.

Xem đáp án » 13/07/2024 14,436

Câu 5:

Cho tam giác ABC, đường trung tuyến AD. Gọi M là một điểm trên cạnh AC sao cho AM=12MC. Gọi O là giao điểm của BM và AD. Chứng minh rằng:

a, O là trung điểm của AD.

b, OM=14BM.

Xem đáp án » 13/07/2024 9,435

Câu 6:

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:

a) Chứng minh: AB2 + CH2 = AC2 + BH2.

b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.

c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.

Xem đáp án » 13/07/2024 9,025

Câu 7:

Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).

Xem đáp án » 12/07/2024 8,570
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay