Câu hỏi:

13/07/2024 1,485 Lưu

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:

a) Ba điểm D, A, E thẳng hàng;

b) DE tiếp xúc với đường tròn có đường kính BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH (ảnh 1)

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB là tia phân giác của góc HAD  

Suy ra: DAB^=BAH^

AC là tia phân giác của góc HAE

Suy ra: HAC^=CAE^

Ta có: HAD^+HAE^=2BAH^+HAC^=2BAC^=2.90°=180°

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

AD BD; AE CE

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: MA//BD MA DE

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF (ảnh 1)

a) Xét tam giác AED và CEF có:

EA = EC

AED^=CEF^(đối đỉnh)

ED = EF

∆AED = ∆CEF (c.g.c)

DA = CF

Mà DA = DB nên DB = CF

b) ∆AED = ∆CEF nên: A^=ECF^

Suy ra: AB // CF

BDC^=DCF^ (so le trong)

Xét tam giác BDC và FCD có:

DC chung

BDC^=DCF^

BD = CF

∆BDC = ∆FCD (c.g.c)

c) ∆BDC = ∆FCD nên DCB^=CDF^

Suy ra: DE // BC (2 góc so le trong bằng nhau)

Lại có BC = DF = 2DE

Nên: DE=12BC.

Lời giải

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. (ảnh 1)

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.

Khi đó OI = (OMN) ∩ (BCD)

b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD

K, H OI nên K, H (OMN)

Vậy H = BC ∩ (OMN)

c) K, H OI nên K, H (OMN)

Nên K = BD ∩ (OMN).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP